Facts

gcd(i,t) = the greatest common divisor of i and t = the largest positive integer m
such that m|i and mlt.

b v
* |ax:> ged(a,b) X

Proof. b|ax:%eN. Let a=k,gcd(a,b), and b=k,gcd(a,b), with

k, gcdferD) x
gcd(kl,kz):l.Then,%:M klXeN.But

kzw k,

ged(ky, k,)=1; hence, k,|x.
(a-D)(a"-1).

Let p be a prime. Then ged( p, p' —1)=1. Also, if a| p* -1, ged(p*, p* -1)=1.

ky
Proof. Having p“ implies gcd = p*, k, <k, k,. To have P - 1 IR ——
p 0

o Y

e N, k, has to be 0.
(Remark: To see that k, <k, , note that p'c > p'2 —1> p* )
alb, ajcd, ged(b,c)=1 = ald.
Proof. Let x = 1 be any factor of a. Then x|a. This implies x|b. Now, if x|c,

then x is a common divisor of b and ¢, which contradicts gcd(b,c) =1. So,

not factor of aisin c. To have a|cd , we must have all factors of a in d.

Proof. ged(a,b)=1= 3 s,teD sa+th=1. a|(bc) = bc=aq for some
geD.sa+th=1 = sac+thc=c = sac+tag=c = a(sc+tq)=c.

p‘[m forall k {1,2,3,...,p—1} and for all prime integers p.

) ( _1)( _2)...( —k+1)
Proof. (k]: P kp(k_1)r;k—2)...ré2)(1)

prime, none of the integers k,(k —1),...,3,2 are divisors of p. (Ej is thus

is always an integer. Since p is

a multiple of p.

Finite fields / Galois Fields

Finite fields were discovered by Evariste Galois and are thus known as Galois fields.



The Galois field of order g is usually denoted GF(q).
GF(q) is a field. Hence
1. GF(q) forms a commutative group under +.

The additive identity element is labeled “0*.

2. GF(q)\{0} forms a commutative group under .

The multiplicative identity element is labeled “1”.
3. The operation “+” and “- distribute: a-(b+c)=(a-b)+(a-c).
A finite field of order q is unique up to isomorphism.

e Two finite fields of the same size are always identical up to the labeling of their
elements.

e The order of Galois field completely specifies the field.

The integers {0, 1, 2, ..., p-1}, where p is a prime, form the field GF(p) under modulo
p addition and multiplication.

The order g of a Galois field GF(q) must be a power of a prime.

Finite fields of order p™ where p is a prime can be constructed as vector spaces over
the prime order field GF(p).

It is possible to represent GF(qm) as an m-dimensional subspace over GF(q), where

GF(q) is a subfield of GF(q™) of prime power order.

Because GF( p”‘) contains the prime-order field GF( p) and can be viewed as
construction over GF(p), we call GF(p™) an extension of the field of order p.

e Fields of order 2™ can be referred to as a binary extension field.

Vpe GF(q) , at some point the sequence 1, 3, 3%, 3°,... begins to repeat values
found earlier in the sequence. The first element to repeat must be 1.

Proof. (1) GF(q) has only a finite number of elements; hence, the sequence must
repeat. (2) Assume 8* = % =1 x>y >0 is the first sequence to repeat.

Then, because B*A*Y = f* = ¥, multiply both sides by (,6”’)71 to get
B =1. S0, 1 is repeated before (0 < x—y < x) the sequence reaches
S*. Contradiction.

Order and characteristic

The order of a Galois Field Element:
Let e GF(q). ord(S) = the order of B = T!Q{m:ﬂ :1}

V3 € GF(q), nonzero




e Forms a subgroup of the GF(q)\{0} under multiplication
e Contains all of the solutions to the expression XA =1
« ord(p)|(a-1)
o B =leord(B)s
e pi=1l,ie, pi=p.

Let a,,B (S GF(q) such that ,B :ai ) Then, Ord(ﬁ) _ Ol’d(a)

ged (i, ord(ar)) |

The order of a Galois Field Element:
Let 5 e GF(q). ord(f) = the order of 4 = min{m: 5" =1}

e Order is defined using the multiplicative operation and not additive operation.
V3 € GF(q), nonzero

. s={ﬂ,ﬁ2,ﬂ3,...,ﬂ°"’l(ﬁ>}={/5“:1sist}

e Consists of ord(3) distinct elements.
e Forms a subgroup of the GF(q)\{0} under multiplication.
Proof. Lett=ord(p).Then " =p"™" Let f*,8’ €S. Then
(B) =5
ﬂx (ﬂy)_l _ 'Bx'gt—y =ﬂt+x—y _ IB(Hx—y)modt =ﬂ(x—y)modt _Because
0<(x—-y)modt <t, we have ﬁx(ﬁy)_l €s.

e Contains all of the solutions to the expression x*) =1.

e ord(B)|(a-1).

Proof. Because {,B,,Bz,ﬂs,...,ﬂ‘”d(ﬂ)} is a subgroup of GF(q)\{0}, by

Lagrange’s theorem, ‘{ﬂ,ﬁz,lg{'._,ﬁord(ﬂ)}
=1

Hence, t|(q-1).

divides |GF(q)\{0}|.

e This determines the possible orders a finite field element can display.

o p=lcord(B)s.




Proof. “<” ord()|s = s=kord(8), ke NU{0} =
p=(p) =1 =1,
“=" (1) If s=0, then ord(/})‘o trivially. (2) If s >0, then we can
write s= q ord(8)+ ) rd(ﬁ)}, i.e., r=smodord(/). Note that

eNU{0} €{0,...,or
1

p=p [ﬂs = ﬂrﬁrJ.So, p°=p"=1.From " =1, we
know that r must then be 0; otherwise, contradict the minimality of the
order of £.
e B =1,ie, pf'=p5.
Proof. ord(A)|(q-1).
ord(«)
ged(i,ord(a))

Proof. Let ord(«)=t, and ord(/)=x. Note that

e Leta,BeGF(q) suchthat #=¢'. Then, ord(S)=

: N; h
ged(i,t) ged(i,t) = e

B = (o )oedli0) = (' )oedli) =190 =1 This implies

ord( ) acd(i0)’ ie., X Gcd(i)’ Similarly, since 1= g :(ai)x we
have ord(«)|ix, i.e., t|ix which implies t_ x . Because we have
ged(i,t)
d .H , X = .
" ged (i, t) o ged (i,t) - T X ged(i,t)

o ord(a')=ord(«) iff ged(i,ord(«)) = 1.
o ord(a)
Proof. ord(a)_W.

e An element with order (g-1) in GF(q) is called a primitive element in GF(q).
Every field GF(q) contains exactly ¢(q—1) > 1 primitive elements.

e The Euler ¢ function: ¢(t) = ‘{1£i<t‘gcd(i,t):1}‘ =t [] (1—%)
prime number p
l<p<t
plt




o g(pEpr-pr)=pr (P -1 P (P -1)- P (P, -1)

An element with order (g-1) in GF(q) is called a primitive element in GF(q).

e Every field GF(q) contains exactly ¢(q —1) > 1 primitive elements.

The Euler ¢ function (Euler totient function) evaluated at an integer t = ¢(t)

the number of integers in the set {1,...,t —1} that are relatively prime to t (i.e.,
share no common divisors other than one.)

= ‘{1si<t‘90d(i1t):1}‘

b

l<p<t
plt

1.

e > ( for positive t.
e Ifpisaprime,then

o ¢(p):p—1.
o 4(p")=p""(p-1)
e If p; and p; are distinct prime, then
* #(p-p;)=4(p)e(p.)=(p.-1)(P, - 1)
o ¢(pI'p;)=p""p (P -1)(P, -1)
. ¢(pf‘1p§2~-p§")=pf‘lpiz'--pﬁ“(l—%l](l—piz}--(l—pinj
=p (P —1) py (P~ 1) (P, 1)

Given that the integer t divides (g-1), then the number of elements of order t in

GF(q) is ¢(t).

The multiplicative structure of Galois Fields.
Consider the Galois field GF(q)

(1) If t does not divide (g-1), then there are no elements of order tin GF(q).
(2) If t‘(q —1), then there are ¢(t) elements of order t in GF(q).

Proof. (2) If t=ord(«), then the set {a,az,...,a‘} contains t distinct solutions

of x' =1, and hence the set contains all the solutions. Therefore, all
element of order t must contain in this set. To find which one has order t,

we know that ord(a') = ord(«) iff ged(i,ord(e)) = 1. Hence, we the




number of element with order t is ‘{13 i <t‘gcd(i,t)=1}‘ = ¢(t) by
definition.
t|(a—-1) iff 38 GF(q) such that ord(8)=t.

In every field GF(q), there are exactly ¢(q—1) primitive elements.

GF(q) can be represented using 0 and (g-1) consecutive powers of a primitive field

element o € GF(q).

All nonzero elements in GF(q) can be represented as (g-1) consecutive powers

of a primitive element c.. EX. {a,az,...,aq‘l} or {1,042,...,05“’2}.
B

For 3,3, € GF(q)\{0}, Ji,i, such that B, =a" and 3, =™ ; hence,

ﬂl . ﬂz _ ail . 0{i2 _ ai1+i2 _ 0{i1+i2 modulo (g-1) .

Note also that ord(a‘)— ord(e) _ q-1
- ged(i,ord(a)) ged(i,q-1)

Multiplication in a Galois field of nonprime order can be performed by
representing the elements as powers of the primitive field element « and adding
their exponents modulo (g-1).

Let m(1) refer to the summation of m ones, i.e,, 1®1&®-.-@1.
\_ﬂ__/

m1's

Consider the sequence (n(l))?=0 =0,11©11®1®1,.... Then, 0 is the first repeated
elements.
If a,b e GF(q), a-b=0, then either a or b must equal zero. Otherwise, GF(q)— {0}

cannot form a commutative group under “-” because it has no 0.

The characteristic of a Galois field GF(q) is the smallest positive integer m such
that m(1)=1@1@---@1=0.
%,—J

m1ls

. GF( p”‘) has characteristic p, where p is a prime number.

o |f p|£,then a+a+---+a=0.
| ———

£ times

The characteristic of a Galois field GF(q) is the smallest positive integer m such
that m(1)=1@©1®---®1=0.
\_ﬁf_—/

m1ls

e Considersequence 0,1 ,1+11+1+11+1+1+1,....
Y o —V— Y—V—

1) 2(1 3(2) 4(2)




This sequence must begin to repeat and the first element to repeat is 0.
Proof. Since the field is finite, this sequence must begin to repeat at some
point. If j(1) is the first repeated element, being equal to k(1) for

0<k < j, it follows that k must be zero; otherwise (j—k)(1)=0 isan
earlier repetition than j(1).

o m(L)-m,(1)=(mm,)(1)
e Always a prime integer.

. Suppose not. Consider the sequence 0, 1, 2(1), 3(2), ..., k(1),
(k+1)(1),... Suppose that the first repeated element is k(1) = O where k
is not a prime. Then 3 m,n>1 such that mn =k . It follows that

m(1)-n(1) =k(1). So we have m(1)-n(1) =0, which implies
m(1)=0 or n(1)=0. Since 0 <m,n <k, this contradicts the
minimality of the characteristic of the field.

Notational caution: we may write k(c) or ke where k € N to denote

a +a+---+a. Note that k is irrelevant to the field GF(q) which contains a.. Think

k times

of k as k(1). Don’t confuse this with a3 or « - where both o, f € GF(q).
For a field GF(q) with characteristic p, let & € GF(q). Then

Proof. a+a+---+a:{1+1+---+1}-a:0-a:0.

p times p times

o |f p|£, then a+a+---+a=0.
£ times
Let GF(q) be a (any) field of characteristic p, then it contains a prime-order subfield
GF(p) = Z,={0,1,2(1),3(1),....(p-1)(1)}.
Proofl The set Z, ={0,1,2(1),3(1),...,(p-1)(1)} contains p distinct elements

because p is the characteristic of GF(q) and 0 have to be the first element
to repeat. The identities 0,1 Z . Z is closed under both GF(q) addition

and multiplication because the sum or product of sums of ones is still a
sum of ones and m(1)=(mmod p)(1). The additive inverse of j(1)eZ,

is clearly (p— j)(1) € Z,. The multiplicative inverse of j(1) (j#0ora
multiple of p) is simply k(l), where j-k=1mod p . k exists because we
know that 1€ Z  and the set {j . x‘x € Zp} = Z, by multiplicative closure

and that for a=0, b, #b, =a-b #a-b,. The rest of the field

requirements (Associativity, Distributivity, etc.) are satisfied by noting
that Z, is embedded in the field GF(q). Z, < GF(q) and it is a field.



e Z,isasubfield of all fields GF(q) of characteristic p.
e Because the field of order p is unique up to isomorphisms,
Z, must be the field of integers under modulo p addition and multiplication.

GF( p”‘) is an m-dimensional vector space over a field GF( p).

Let GF(q) be a (any) field of characteristic p, then it contains a prime-order subfield
GF(p) = Z, ={0,1,2(1),3(1),....(p-1)(1)} .

GF(p"), where p is a prime number.

e isan m-dimensional vector space over a field GF(p).
e contains all Galois fields of order p° where bjm.

e has characteristic p

The order g of GF(q) must be a power of a prime.

. Let S, be a nonzero element in GF(q). There are p distinct elements of the
form «, 8, € GF(q), where ¢, ranges over all p of the elements in
GF(p).

(Recall, that ac=bc, c#0 = (a—b)c=0 = a-b=0 = a=b)
If the field GF(q) contains no other elements, then the proof is complete.
If there is an element 3, that is not of the form «,8,, o, € GF(p), then
there are p’ distinct elements in GF(q) of the form a8, + a3, € GF(q),
where o, a, € GF(p).
This process continues until all elements in GF(q) can be represented in
the form a8, + &, 3, +--- + &, B, € GF(q).

e Each combination of coefficients (o, a,....,, ) € (GF( p))m corresponds by
construction to a distinct element in GF(q).
Proof. Assume o, +a,p, +-+a,pB, =af +a,pB, +-+a B, then
we have y,5,+ 7,0, ++-+ 7.5, =0 where y, =¢, — ¢/, notall
zero. Let k = miax{i 17, #0}. Then we have

Be=(=1rn) B+ (=nr) B+ + (1) B
Also, Vi —y, "7, € GF(p). This contradict the definition of 5, (by
construction) because g, should not be of the form
B =a.p+a,f,+ - +a_ B, Where o; € GF(p).




GF(p™) contains all Galois fields of order p° where bjm.

GF(2°)

e Need to be able to express p" = pb)y.

e GF(4)z GF(32)

An element g in GF(qm) lies in the subfield GF(q) if and only if %= 4.
Proof. “=” Let 8 GF(q) < GF(q™). Then, ord(/)|(q—1) by the

multiplicative structure of GF. So, %" =1, which implies g% = §. “<”
Let B%=p.Then B isaroot of x*—x=0. The q elements of GF(q)
comprise all g roots of x* —x =0 and the result follow.

For nonzero elements £ in GF(q”‘), the following are equivalent:

(1) BeGF(q)
(2 pit=1
(3) ord(,b’)‘(q—l)

Proof. “(1) = (3) = (2)” by the multiplicative structure of Galois fields. “(2) =
(3)” because in any GF(q') we have g% =1 = ord(ﬂ)‘(q —1). Finally,

(2) = (1) by theorem above.
B lies in the subfield GF(q) if and only if 8% = 4. For nonzero £, this is

equivalent to ord()|(q-1).

Let o be a primitive element in GF(qm). Then, all nonzero elements in GF(q”‘) can
be represented as o' for some integer j. An element o is in the subfield GF(q) if
and only if j-gq=j modulo (q'“ —1).

q iq mod(qm —1)

Proof. a'eGF(q) iff (aj)q =a’.In GF(q"), we have (a') =a . So,
we want jgmod(q" —1)= j.

e Remark:
e 0eGF(q).



 1=0a’eGF(q) because 0-q=0 modulo (q" -1).
e Thisisequivalentto j(q—1)=0 mod (q’” —1)

g _11J forkel,0<k<qg-1.

e Itisalsoequivalentto j= k(

Proof. j(q-1)=0 mod (q”‘ —1) means that j(q—l):(q"‘ —1)k . Now,
0<j<qg"-1. (aj‘j:qm_l :1:a°). This implies

M<k<w

n s ] .So0, 0<k<q-1.
q - q -

Subfield: GF( p”‘) , where p is a prime number contains all Galois fields of order p°

where bjm.
An element 4 in GF(q™) lies in the subfield GF(q) if and only if 8% = 3. For
nonzero /3, this is equivalent to ord(ﬂ)‘(q -1).

Let « be a primitive element in GF(qm). Then, all nonzero elements in GF(q”‘) can

be represented as ' for some integer j. An element «’ is in the subfield GF(q) if

m

and only if j-q= j modulo (g" —1) which is equivalent to j = k[q _1] forkel,

g-1
0<k<qg-1.
e 01eGF(q)
o Llet/= Qq _11. Then GF(q):{O,aO,ag,a”,as” ..... a(qu)/,}.

It is possible to represent GF(qm) as an m-dimensional subspace over GF(q) , Where
GF(q) is a subfield of GF(qm) of prime power order.
Let &, 8 be elements in the field GF( pm) . Then (a +ﬂ)pr =a” +pB" forr=1,2,

3, ...
Proof. We will prove the statement by induction on r.

(05+,B)p =aP +(Ejap‘lﬁ+£2ja"‘2ﬂ2+---+ﬂp. Because p‘(i} for

ke{l23,...,p—1}, we know that Pl_|P (1)=]1+1+---+1|=0 for
k k —

(pjtimes
k




ke{23,...,p-1}.Hence, (e +B)° =a’ + BP. So, the statement is true
for r = 1. Now, let the statement true for r = ¢. Then,

(a+,3)pﬁ =a” + B . We then have

(ot—i-ﬂ)pH1 :((a+ﬂ)pf )p :(ap/ +,Hp[)p :(ap[)p +(ﬂpf)p
g
* Leta,a,,...,a beelements in the field GF(p™), then
(+a,++a) =af +af +-+af forr=1,2,3, ...

Proof. We will prove by induction on t. Note that the statement is true for t = 2.
Now let it be true for t = /. Them we have

r r

(+a,++a,,) z((a1+0(2+---+0@)+am)p
=(0{1+052+---+056)pr +al,

_ P p' P p
=a +a, ++a +a,



