Facts

gcd(i,t) = the greatest common divisor of i and t = the largest positive integer m such that m|i and m|t.

• $b|ax \Rightarrow \frac{b}{\gcd(a,b)}|x$ Proof. $b|ax \Rightarrow \frac{ax}{b} \in \mathbb{N}$. Let $a = k_1 \gcd(a,b)$, and $b = k_2 \gcd(a,b)$, with $\gcd(k_1,k_2) = 1$. Then, $\frac{ax}{b} = \frac{k_1 \gcd(a,b)x}{k_2 \gcd(a,b)} = \frac{k_1x}{k_2} \in \mathbb{N}$. But $\gcd(k_1,k_2) = 1$; hence, $k_2|x$. • $(q-1)|(q^m-1)$.

• Let p be a prime. Then $gcd(p^{k_1}, p^{k_2} - 1) = 1$. Also, if $a \mid p^{k_2} - 1$, $gcd(p^{k_1}, p^{k_2} - 1) = 1$.

Proof. Having p^{k_1} implies $gcd = p^{k_0}$, $k_0 \le k_1, k_2$. To have $\frac{p^{k_2} - 1}{p^{k_0}} = p^{k_2 - k_0} - \frac{1}{p^{k_0}} \in \mathbb{N}$, k_0 has to be 0.

(Remark: To see that $k_0 \le k_2$, note that $p^{k_2} \ge p^{k_2} - 1 \ge p^{k_0}$.)

- $a|b, a|cd, \gcd(b,c) = 1 \Rightarrow a|d$.
 - Proof. Let $x \neq 1$ be any factor of a. Then $x \mid a$. This implies $x \mid b$. Now, if $x \mid c$, then x is a common divisor of b and c, which contradicts gcd(b,c) = 1. So, not factor of a is in c. To have $a \mid cd$, we must have all factors of a in d.
 - Proof. $gcd(a,b) = 1 \Rightarrow \exists s,t \in D \quad sa + tb = 1$. $a|(bc) \Rightarrow bc = aq$ for some $q \in D$. $sa + tb = 1 \Rightarrow sac + tbc = c \Rightarrow sac + taq = c \Rightarrow a(sc + tq) = c$.
- $p \begin{vmatrix} p \\ k \end{vmatrix}$ for all $k \in \{1, 2, 3, ..., p-1\}$ and for all prime integers p. Proof. $\binom{p}{k} = \frac{p(p-1)(p-2)\cdots(p-k+1)}{k(k-1)(k-2)\cdots(2)(1)}$ is always an integer. Since p is prime, none of the integers k, (k-1), ..., 3, 2 are divisors of p. $\binom{p}{k}$ is thus

a multiple of *p*.

Finite fields / Galois Fields

• Finite fields were discovered by Evariste Galois and are thus known as Galois fields.

- The Galois field of order q is usually denoted GF(q).
- GF(q) is a field. Hence
 - 1. GF(q) forms a commutative group under +.

The additive identity element is labeled "0".

2. $GF(q) \setminus \{0\}$ forms a commutative group under \cdot .

The multiplicative identity element is labeled "1".

- 3. The operation "+" and "." distribute: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.
- A finite field of order *q* is unique up to isomorphism.
 - Two finite fields of the same size are always identical up to the labeling of their elements.
 - The order of Galois field completely specifies the field.
- The integers {0, 1, 2, ..., *p*-1}, where *p* is a prime, form the field GF(*p*) under modulo *p* addition and multiplication.
- The order q of a Galois field GF(q) must be a power of a prime.
- Finite fields of order p^m where p is a prime can be constructed as vector spaces over the prime order field GF(p).
- It is possible to represent $GF(q^m)$ as an *m*-dimensional subspace over GF(q), where GF(q) is a subfield of $GF(q^m)$ of prime power order.
- Because GF(p^m) contains the prime-order field GF(p) and can be viewed as construction over GF(p), we call GF(p^m) an <u>extension</u> of the field of order p.
 - Fields of order 2^m can be referred to as a **<u>binary extension field</u>**.
- $\forall \beta \in GF(q)$, at some point the sequence $1, \beta, \beta^2, \beta^3, \dots$ begins to repeat values found earlier in the sequence. The first element to repeat must be 1.
 - Proof. (1) GF(q) has only a finite number of elements; hence, the sequence must repeat. (2) Assume $\beta^x = \beta^y \neq 1$ x > y > 0 is the first sequence to repeat. Then, because $\beta^y \beta^{x-y} = \beta^x = \beta^y$, multiply both sides by $(\beta^y)^{-1}$ to get $\beta^{x-y} = 1$. So, 1 is repeated before (0 < x - y < x) the sequence reaches β^x . Contradiction.

Order and characteristic

- The <u>order of a Galois Field Element</u>: Let $\beta \in GF(q)$. ord (β) = the order of $\beta = \min_{m \in \mathbb{N}} \{m : \beta^m = 1\}$
- $\forall \beta \in \mathrm{GF}(q)$, nonzero

- $S = \left\{ \boldsymbol{\beta}, \boldsymbol{\beta}^2, \boldsymbol{\beta}^3, \dots, \boldsymbol{\beta}_{=1}^{\operatorname{ord}(\boldsymbol{\beta})} \right\} = \left\{ \boldsymbol{\beta}^i : 1 \le i \le t \right\}$
 - Forms a subgroup of the $GF(q) \setminus \{0\}$ under multiplication
 - Contains all of the solutions to the expression $x^{\operatorname{ord}(\beta)} = 1$.

•
$$\operatorname{ord}(\beta)|(q-1)$$

•
$$\beta^s = 1 \Leftrightarrow \operatorname{ord}(\beta) | s$$

•
$$\beta^{q-1} = 1$$
, i.e., $\beta^q = \beta$.

- Let $\alpha, \beta \in GF(q)$ such that $\beta = \alpha^i$. Then, $ord(\beta) = \frac{ord(\alpha)}{gcd(i, ord(\alpha))}$.
- The order of a Galois Field Element:

Let $\beta \in GF(q)$. ord (β) = the order of $\beta = \min_{m \in \mathbb{N}} \{m : \beta^m = 1\}$

- Order is defined using the <u>multiplicative</u> operation and not additive operation.
- $\forall \beta \in \mathrm{GF}(q)$, nonzero

•
$$S = \left\{ \beta, \beta^2, \beta^3, \dots, \beta_{=1}^{\operatorname{ord}(\beta)} \right\} = \left\{ \beta^i : 1 \le i \le t \right\}$$

- Consists of $\operatorname{ord}(\beta)$ distinct elements.
- Forms a subgroup of the $GF(q) \setminus \{0\}$ under multiplication.

Proof. Let
$$t = \operatorname{ord}(\beta)$$
. Then $\beta^m = \beta^{m \mod t}$. Let $\beta^x, \beta^y \in S$. Then
 $(\beta^y)^{-1} = \beta^{t-y}$.
 $\beta^x (\beta^y)^{-1} = \beta^x \beta^{t-y} = \beta^{t+x-y} = \beta^{(t+x-y) \mod t} = \beta^{(x-y) \mod t}$. Because
 $0 \le (x-y) \mod t < t$, we have $\beta^x (\beta^y)^{-1} \in S$.

- Contains all of the solutions to the expression $x^{\operatorname{ord}(\beta)} = 1$.
- $\operatorname{ord}(\beta)|(q-1).$

Proof. Because
$$\left\{\beta, \beta^2, \beta^3, \dots, \beta_{=1}^{\operatorname{ord}(\beta)}\right\}$$
 is a subgroup of $\operatorname{GF}(q) \setminus \{0\}$, by
Lagrange's theorem, $\left|\left\{\beta, \beta^2, \beta^3, \dots, \beta_{=1}^{\operatorname{ord}(\beta)}\right\}\right|$ divides $\left|\operatorname{GF}(q) \setminus \{0\}\right|$.
Hence, $t|(q-1)$.

• This determines the possible orders a finite field element can display.

•
$$\beta^s = 1 \Leftrightarrow \operatorname{ord}(\beta) | s$$
.

Proof. " \Leftarrow " ord(β) $| s \Rightarrow s = k \operatorname{ord}(\beta), k \in \mathbb{N} \cup \{0\} \Rightarrow$ $\beta^{s} = \left(\beta^{\operatorname{ord}(\beta)}\right)^{k} = 1^{k} = 1.$ " \Rightarrow " (1) If s = 0, then ord $(\beta) | 0$ trivially. (2) If s > 0, then we can write $s = \underset{\in \mathbb{N} \cup \{0\}}{q} \operatorname{ord}(\beta) + \underset{\in \{0, \dots, \operatorname{ord}(\beta)\}}{r}$, i.e., $r = s \operatorname{mod} \operatorname{ord}(\beta)$. Note that $\beta^{s} = \beta^{r} \left(\beta^{s} = \left(\beta^{\text{ord} \beta} \right)^{q} \beta^{r} = \beta^{r} \right)$. So, $\beta^{s} = \beta^{r} = 1$. From $\beta^{r} = 1$, we know that r must then be 0; otherwise, contradict the minimality of the order of β . • $\beta^{q-1} = 1$, i.e., $\beta^q = \beta$ Proof. ord $(\beta)|(q-1)$. Let $\alpha, \beta \in GF(q)$ such that $\beta = \alpha^i$. Then, $ord(\beta) = \frac{ord(\alpha)}{gcd(i ord(\alpha))}$. Proof. Let $\operatorname{ord}(\alpha) = t$, and $\operatorname{ord}(\beta) = x$. Note that $\frac{t}{\operatorname{gcd}(i,t)}, \frac{i}{\operatorname{gcd}(i,t)} \in \mathbb{N}$; hence $\beta^{\frac{t}{\gcd(i,t)}} = (\alpha^i)^{\frac{t}{\gcd(i,t)}} = (\alpha^t)^{\frac{i}{\gcd(i,t)}} = 1^{\frac{i}{\gcd(i,t)}} = 1.$ This implies $\operatorname{ord}(\beta) \left| \frac{t}{\operatorname{gcd}(i,t)} \right|$, i.e., $x \left| \frac{t}{\operatorname{gcd}(i,t)} \right|$. Similarly, since $1 = \beta^{\operatorname{ord}(\beta)} = (\alpha^i)^x$, we have $\operatorname{ord}(\alpha)|ix$, i.e., t|ix which implies $\frac{t}{\operatorname{gcd}(i,t)}|x$. Because we have $x \left| \frac{t}{\gcd(i,t)} \right|$ and $\frac{t}{\gcd(i,t)} \left| x \right|$. Hence, $x = \frac{t}{\gcd(i,t)}$. • $\operatorname{ord}(\alpha^{i}) = \operatorname{ord}(\alpha)$ iff $\operatorname{gcd}(i, \operatorname{ord}(\alpha)) = 1$. Proof. $\operatorname{ord}(\alpha^{i}) = \frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}(i \operatorname{ord}(\alpha))}$.

- An element with order (q-1) in GF(q) is called a <u>primitive element</u> in GF(q).
 Every field GF(q) contains exactly φ(q-1) ≥ 1 primitive elements.
- The <u>Euler ϕ function</u>: $\phi(t) = \left| \left\{ 1 \le i < t \mid \gcd(i, t) = 1 \right\} \right| = t \prod_{\substack{\text{prime number } p \\ 1 \le p \le t \\ p \nmid t}} \left(1 \frac{1}{p} \right) \right|$

•
$$\phi(p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}) = p_1^{a_1-1}(p_1-1)p_2^{a_2-1}(p_2-1)\cdots p_n^{a_n-1}(p_n-1)$$

- An element with order (q-1) in GF(q) is called a <u>primitive element</u> in GF(q).
 - Every field GF(q) contains exactly $\phi(q-1) \ge 1$ primitive elements.
- The Euler ϕ function (Euler totient function) evaluated at an integer $t = \phi(t)$
 - = the number of integers in the set $\{1, ..., t-1\}$ that are <u>relatively prime</u> to *t* (i.e., share no common divisors other than one.)

$$= \left| \left\{ 1 \le i < t \, \middle| \gcd(i, t) = 1 \right\} \right|$$

$$= t \prod_{\substack{\text{prime number } p \\ 1$$

- > 0 for positive *t*.
- If *p* is a prime, then
 - $\phi(p) = p 1$.
 - $\phi(p^m) = p^{m-1}(p-1)$
- If p_1 and p_2 are distinct prime, then

•
$$\phi(p_1 \cdot p_2) = \phi(p_1)\phi(p_2) = (p_1 - 1)(p_2 - 1)$$

•
$$\phi(p_1^m p_2^n) = p_1^{m-1} p_2^{n-1} (p_1 - 1) (p_2 - 1)$$

•
$$\phi(p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}) = p_1^{a_1}p_2^{a_2}\cdots p_n^{a_n}\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)\cdots\left(1-\frac{1}{p_n}\right)$$

= $p_1^{a_1-1}(p_1-1)p_2^{a_2-1}(p_2-1)\cdots p_n^{a_n-1}(p_n-1)$

- Given that the integer t divides (q-1), then the number of elements of order t in GF(q) is φ(t).
- The multiplicative structure of Galois Fields. Consider the Galois field GF(q)
 - (1) If t does not divide (q-1), then there are no elements of order t in GF(q).
 - (2) If t|(q-1), then there are $\phi(t)$ elements of order t in GF(q).
 - Proof. (2) If $t = \operatorname{ord}(\alpha)$, then the set $\{\alpha, \alpha^2, \dots, \alpha^t\}$ contains *t* distinct solutions of $x^t = 1$, and hence the set contains all the solutions. Therefore, all element of order *t* must contain in this set. To find which one has order *t*, we know that $\operatorname{ord}(\alpha^i) = \operatorname{ord}(\alpha)$ iff $\operatorname{gcd}(i, \operatorname{ord}(\alpha)) = 1$. Hence, we the

number of element with order *t* is $|\{1 \le i < t | \gcd(i, t) = 1\}| = \phi(t)$ by definition.

- t|(q-1) iff $\exists \beta \in GF(q)$ such that $ord(\beta) = t$.
- In every field GF(q), there are exactly $\phi(q-1)$ primitive elements.
- GF(q) can be represented using 0 and (q-1) consecutive powers of a primitive field element α ∈ GF(q).
 - All nonzero elements in GF(q) can be represented as (q-1) consecutive powers of a primitive element α .. Ex. $\left\{\alpha, \alpha^2, \dots, \underline{\alpha}^{q-1}\right\}$ or $\left\{1, \alpha^2, \dots, \alpha^{q-2}\right\}$.

• For
$$\beta_1, \beta_2 \in GF(q) \setminus \{0\}$$
, $\exists i_1, i_2$ such that $\beta_1 = \alpha^{i_1}$ and $\beta_2 = \alpha^{i_2}$; hence,
 $\beta_1 \cdot \beta_2 = \alpha^{i_1} \cdot \alpha^{i_2} = \alpha^{i_1+i_2} = \alpha^{i_1+i_2 \mod (q-1)}$.

• Note also that
$$\operatorname{ord}(\alpha^{i}) = \frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}(i, \operatorname{ord}(\alpha))} = \frac{q-1}{\operatorname{gcd}(i, q-1)}$$

- Multiplication in a Galois field of nonprime order can be performed by representing the elements as powers of the primitive field element α and adding their exponents modulo (q-1).
- Let $\underline{m(1)}$ refer to the summation of *m* ones, i.e., $\underbrace{1 \oplus 1 \oplus \cdots \oplus 1}_{m \ 1's}$.
- Consider the sequence $(n(1))_{n=0}^{\infty} = 0, 1, 1 \oplus 1, 1 \oplus 1 \oplus 1, \dots$ Then, 0 is the first repeated elements.
- If a,b∈GF(q), a ⋅ b = 0, then either a or b must equal zero. Otherwise, GF(q) {0} cannot form a commutative group under "·" because it has no 0.
- The <u>characteristic</u> of a Galois field GF(q) is the smallest positive integer *m* such that $m(1) = \underbrace{1 \oplus 1 \oplus \dots \oplus 1}_{m \ 1s} = 0.$
 - $GF(p^m)$ has characteristic p, where p is a prime number.
 - If $p \mid \ell$, then $\underbrace{\alpha + \alpha + \dots + \alpha}_{\ell \text{ times}} = 0$.
- The <u>characteristic</u> of a Galois field GF(q) is the smallest positive integer *m* such that $m(1) = \underbrace{1 \oplus 1 \oplus \dots \oplus 1}_{m \xrightarrow{1}} = 0.$
 - Consider sequence $0, \underbrace{1}_{1(1)}, \underbrace{1+1}_{2(1)}, \underbrace{1+1+1}_{3(1)}, \underbrace{1+1+1+1}_{4(1)}, \ldots$

This sequence must begin to repeat and the first element to repeat is 0.

- Proof. Since the field is finite, this sequence must begin to repeat at some point. If j(1) is the first repeated element, being equal to k(1) for $0 \le k < j$, it follows that k must be zero; otherwise (j-k)(1) = 0 is an earlier repetition than j(1).
- $m_1(1) \cdot m_2(1) = (m_1 m_2)(1)$
- Always a prime integer.

Proof. Suppose not. Consider the sequence 0, 1, 2(1), 3(1), ..., k(1), (k+1)(1),... Suppose that the first repeated element is k(1) = 0 where kis not a prime. Then $\exists m, n > 1$ such that mn = k. It follows that $m(1) \cdot n(1) = k(1)$. So we have $m(1) \cdot n(1) = 0$, which implies m(1) = 0 or n(1) = 0. Since 0 < m, n < k, this contradicts the minimality of the characteristic of the field.

• <u>Notational caution</u>: we may write $k(\alpha)$ or $k\alpha$ where $k \in \mathbb{N}$ to denote $\underline{\alpha + \alpha + \dots + \alpha}_{k \text{ times}}$. Note that *k* is irrelevant to the field GF(q) which contains α . Think

of k as k(1). Don't confuse this with $\alpha\beta$ or $\alpha \cdot \beta$ where both $\alpha, \beta \in GF(q)$.

• For a field GF(q) with characteristic *p*, let $\alpha \in GF(q)$. Then

Proof.
$$\underline{\alpha + \alpha + \dots + \alpha}_{p \text{ times}} = \left(\underbrace{1 + 1 + \dots + 1}_{p \text{ times}}\right) \cdot \alpha = 0 \cdot \alpha = 0$$

• If
$$p | \ell$$
, then $\underline{\alpha + \alpha + \dots + \alpha}_{\ell \text{ times}} = 0$.

- Let GF(q) be a (any) field of characteristic p, then it contains a <u>prime-order subfield</u> GF(p) = $Z_p = \{0,1,2(1),3(1),...,(p-1)(1)\}$.
 - **Proof**. The set $Z_p = \{0,1,2(1),3(1),...,(p-1)(1)\}$ contains *p* distinct elements because *p* is the characteristic of GF(*q*) and 0 have to be the first element to repeat. The identities $0,1 \in Z_p$. Z_p is closed under both GF(*q*) addition and multiplication because the sum or product of sums of ones is still a sum of ones and $m(1) = (m \mod p)(1)$. The additive inverse of $j(1) \in Z_p$ is clearly $(p-j)(1) \in Z_p$. The multiplicative inverse of j(1) ($j \neq 0$ or a multiple of *p*) is simply k(1), where $j \cdot k \equiv 1 \mod p$. *k* exists because we know that $1 \in Z_p$ and the set $\{j \cdot x | x \in Z_p\} = Z_p$ by multiplicative closure and that for $a \neq 0$, $b_1 \neq b_2 \Rightarrow a \cdot b_1 \neq a \cdot b_2$. The rest of the field requirements (Associativity, Distributivity, etc.) are satisfied by noting that Z_p is embedded in the field GF(*q*). $Z_p \subset GF(q)$ and it is a field.

- Z_p is a subfield of all fields GF(q) of characteristic p.
- Because the field of order p is unique up to isomorphisms,
 Z_p must be the field of integers under modulo p addition and multiplication.
- $GF(p^m)$ is an *m*-dimensional vector space over a field GF(p).
- Let GF(q) be a (any) field of characteristic p, then it contains a <u>prime-order subfield</u> $GF(p) = Z_p = \{0,1,2(1),3(1),...,(p-1)(1)\}.$
- $GF(p^m)$, where p is a prime number.
 - is an *m*-dimensional vector space over a field GF(p).
 - contains all Galois fields of order p^b where b|m.
 - has characteristic p
- The order q of GF(q) must be a power of a prime.

Proof. Let β_1 be a nonzero element in GF(q). There are *p* distinct elements of the form $\alpha_1\beta_1 \in GF(q)$, where α_1 ranges over all *p* of the elements in GF(p).

(Recall, that ac = bc, $c \neq 0 \Rightarrow (a-b)c = 0 \Rightarrow a-b = 0 \Rightarrow a = b$)

If the field GF(q) contains no other elements, then the proof is complete.

If there is an element β_2 that is not of the form $\alpha_1\beta_1$, $\alpha_1 \in GF(p)$, then there are p^2 distinct elements in GF(q) of the form $\alpha_1\beta_1 + \alpha_2\beta_2 \in GF(q)$, where $\alpha_1, \alpha_2 \in GF(p)$.

This process continues until all elements in GF(q) can be represented in the form $\alpha_1\beta_1 + \alpha_2\beta_2 + \dots + \alpha_m\beta_m \in GF(q)$.

• Each combination of coefficients $(\alpha_1, \alpha_2, ..., \alpha_m) \in (GF(p))^m$ corresponds by construction to a distinct element in GF(q).

Proof. Assume $\alpha_1\beta_1 + \alpha_2\beta_2 + \dots + \alpha_m\beta_m = \alpha'_1\beta_1 + \alpha'_2\beta_2 + \dots + \alpha'_m\beta_m$, then we have $\gamma_1\beta_1 + \gamma_2\beta_2 + \dots + \gamma_m\beta_m = 0$ where $\gamma_i = \alpha_i - \alpha'_i$, not all zero. Let $k = \max_i \{i : \gamma_i \neq 0\}$. Then we have

$$\boldsymbol{\beta}_{k} = \left(-\boldsymbol{\gamma}_{k}^{-1}\boldsymbol{\gamma}_{1}\right)\boldsymbol{\beta}_{1} + \left(-\boldsymbol{\gamma}_{k}^{-1}\boldsymbol{\gamma}_{2}\right)\boldsymbol{\beta}_{2} + \dots + \left(-\boldsymbol{\gamma}_{k}^{-1}\boldsymbol{\gamma}_{k-1}\right)\boldsymbol{\beta}_{k-1}.$$

Also, $\forall i \ -\gamma_k^{-1}\gamma_i \in \mathrm{GF}(p)$. This contradict the definition of β_k (by construction) because β_k should not be of the form $\beta_k = \alpha_1\beta_1 + \alpha_2\beta_2 + \dots + \alpha_{k-1}\beta_{k-1}$ where $\alpha_i \in \mathrm{GF}(p)$. • $GF(p^m)$ contains all Galois fields of order p^b where b|m.

- Need to be able to express $p^m = (p^b)^{\ell}$.
- $GF(4) \not\subset GF(32)$
- An element β in $GF(q^m)$ lies in the subfield GF(q) if and only if $\beta^q = \beta$.
 - Proof. " \Rightarrow " Let $\beta \in GF(q) \subset GF(q^m)$. Then, $ord(\beta)|(q-1)$ by the multiplicative structure of GF. So, $\beta^{q-1} = 1$, which implies $\beta^q = \beta$. " \Leftarrow " Let $\beta^q = \beta$. Then β is a root of $x^q x = 0$. The q elements of GF(q) comprise all q roots of $x^q x = 0$ and the result follow.
- For nonzero elements β in $GF(q^m)$, the following are equivalent:
 - (1) $\beta \in \operatorname{GF}(q)$
 - (2) $\beta^{q-1} = 1$
 - (3) $\operatorname{ord}(\beta)|(q-1)$
 - Proof. "(1) \Rightarrow (3) \Rightarrow (2)" by the multiplicative structure of Galois fields. "(2) \Rightarrow (3)" because in any GF(q') we have $\beta^{q-1} = 1 \Rightarrow ord(\beta) | (q-1)$. Finally, (2) \Rightarrow (1) by theorem above.
- β lies in the subfield GF(q) if and only if $\beta^q = \beta$. For nonzero β , this is equivalent to $\operatorname{ord}(\beta)|(q-1)$.
- Let α be a primitive element in GF(q^m). Then, all nonzero elements in GF(q^m) can be represented as α^j for some integer j. An element α^j is in the subfield GF(q) if and only if j · q ≡ j modulo (q^m − 1).

Proof.
$$\alpha^{j} \in GF(q)$$
 iff $(\alpha^{j})^{q} = \alpha^{j}$. In $GF(q^{m})$, we have $(\alpha^{j})^{q} = \alpha^{jq \mod (q^{m}-1)}$. So, we want $jq \mod (q^{m}-1) = j$.

- Remark:
 - $0 \in \operatorname{GF}(q)$.

- $1 = \alpha^0 \in GF(q)$ because $0 \cdot q \equiv 0 \mod (q^m 1)$.
- This is equivalent to $j(q-1) \equiv 0 \mod (q^m-1)$

• It is also equivalent to
$$j = k \left(\frac{q^m - 1}{q - 1} \right)$$
 for $k \in I$, $0 \le k < q - 1$.
Proof. $j(q-1) \equiv 0 \mod (q^m - 1)$ means that $j(q-1) = (q^m - 1)k$. Now,
 $0 \le j < q^m - 1$. $\left(\alpha^j \Big|_{j=q^m-1} = 1 = \alpha^0 \right)$. This implies
 $\frac{0(q-1)}{q^m - 1} \le k < \frac{(q^m - 1)(q-1)}{q^m - 1}$. So, $0 \le k < q - 1$.

- <u>Subfield</u>: $GF(p^m)$, where p is a prime number contains all Galois fields of order p^b where b|m.
- An element β in GF(q^m) lies in the subfield GF(q) if and only if β^q = β. For nonzero β, this is equivalent to ord(β)|(q-1).
- Let α be a primitive element in GF(q^m). Then, all nonzero elements in GF(q^m) can be represented as α^j for some integer j. An element α^j is in the subfield GF(q) if and only if j ⋅ q ≡ j modulo (q^m 1) which is equivalent to j = k (q^m 1)/(q 1) for k ∈ I, 0 ≤ k < q 1.

•
$$0,1 \in \mathrm{GF}(q)$$

• Let
$$\ell = \frac{q^m - 1}{q - 1}$$
. Then $GF(q) = \left\{0, \alpha^0, \alpha^\ell, \alpha^{2\ell}, \alpha^{3\ell}, \dots, \alpha^{(q-2)\ell}\right\}$

- It is possible to represent GF(q^m) as an m-dimensional subspace over GF(q), where GF(q) is a subfield of GF(q^m) of prime power order.
- Let α, β be elements in the field $GF(p^m)$. Then $(\alpha + \beta)^{p^r} = \alpha^{p^r} + \beta^{p^r}$ for r = 1, 2, 3, ...

Proof. We will prove the statement by induction on *r*.

$$(\alpha + \beta)^{p} = \alpha^{p} + {p \choose 1} \alpha^{p-1} \beta + {p \choose 2} \alpha^{p-2} \beta^{2} + \dots + \beta^{p}. \text{ Because } p \begin{vmatrix} p \\ k \end{vmatrix} \text{ for } k \in \{1, 2, 3, \dots, p-1\}, \text{ we know that } {p \choose k} = {p \choose k} (1) = \left(\underbrace{1 + 1 + \dots + 1}_{\binom{p}{k} \text{ times}}\right) = 0 \text{ for } p = 0 \text{ for }$$

 $k \in \{1, 2, 3, ..., p-1\}.$ Hence, $(\alpha + \beta)^p = \alpha^p + \beta^p$. So, the statement is true for r = 1. Now, let the statement true for $r = \ell$. Then, $(\alpha + \beta)^{p^{\ell}} = \alpha^{p^{\ell}} + \beta^{p^{\ell}}.$ We then have $(\alpha + \beta)^{p^{\ell+1}} = ((\alpha + \beta)^{p^{\ell}})^p = (\alpha^{p^{\ell}} + \beta^{p^{\ell}})^p = (\alpha^{p^{\ell}})^p + (\beta^{p^{\ell}})^p$ $= \alpha^{p^{\ell+1}} + \beta^{p^{\ell+1}}$

• Let $\alpha_1, \alpha_2, ..., \alpha_t$ be elements in the field $GF(p^m)$, then

$$(\alpha_1 + \alpha_2 + \dots + \alpha_t)^{p^r} = \alpha_1^{p^r} + \alpha_2^{p^r} + \dots + \alpha_t^{p^r}$$
 for $r = 1, 2, 3, \dots$

Proof. We will prove by induction on *t*. Note that the statement is true for t = 2. Now let it be true for $t = \ell$. Them we have

$$(\alpha_1 + \alpha_2 + \dots + \alpha_{\ell+1})^{p^r} = ((\alpha_1 + \alpha_2 + \dots + \alpha_\ell) + \alpha_{\ell+1})^{p^r}$$
$$= (\alpha_1 + \alpha_2 + \dots + \alpha_\ell)^{p^r} + \alpha_{\ell+1}^{p^r}$$
$$= \alpha_1^{p^r} + \alpha_2^{p^r} + \dots + \alpha_\ell^{p^r} + \alpha_{\ell+1}^{p^r}$$