
Facts 

• ( )gcd ,i t  = the greatest common divisor of i and t = the largest positive integer m 

such that m i  and m t . 

• 
( )gcd ,
bb ax x
a b

⇒  

Proof. axb ax
b

⇒ ∈ . Let ( )1 gcd ,a k a b= , and ( )2 gcd ,b k a b= , with 

( )1 2gcd , 1k k = . Then, 
( )1 gcd ,k a bax

b
=

( )2 gcd ,

x

k a b
1
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k x
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= ∈ . But 

( )1 2gcd , 1k k = ; hence, 2k x . 

• ( ) ( )1 1mq q− − . 

• Let p be a prime. Then ( )1 2gcd , 1 1k kp p − = . Also, if 2 1ka p − , ( )1 2gcd , 1 1k kp p − = . 

Proof. Having 1kp  implies gcd = 0kp , 0 1 2,k k k≤ . To have 
2

2 0

0 0

1 1k
k k

k k

p p
p p

−−
= −  

∈ , 0k  has to be 0. 

(Remark: To see that 0 2k k≤ , note that 02 2 1 kk kp p p≥ − ≥ .) 

• a b , a cd , ( )gcd , 1b c =  ⇒ a d . 

Proof. Let x ≠ 1 be any factor of a. Then x a . This implies x b . Now, if x c , 

then x is a common divisor of b and c, which contradicts ( )gcd , 1b c = . So, 

not factor of a is in c. To have a cd , we must have all factors of a in d. 

Proof. ( )gcd , 1a b =  ⇒ ∃  ,s t D∈  1sa tb+ = . ( )a bc  ⇒ bc aq=  for some 

q D∈ . 1sa tb+ =  ⇒ sac tbc c+ =  ⇒ sac taq c+ =  ⇒ ( )a sc tq c+ = .  

• 
p

p
k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 for all { }1,2,3, , 1k p∈ −…  and for all prime integers p. 

Proof. ( )( ) ( )
( )( ) ( )( )
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p p p p p k
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 is always an integer. Since p is 

prime, none of the integers ( ), 1 , ,3,2k k − …  are divisors of p. 
p
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⎛ ⎞
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 is thus 

a multiple of p. 

Finite fields / Galois Fields 
• Finite fields were discovered by Evariste Galois and are thus known as Galois fields. 



• The Galois field of order q is usually denoted GF(q). 
• GF(q) is a field. Hence 

1. GF(q) forms a commutative group under +.  
The additive identity element is labeled “0“. 

2. ( ) { }GF \ 0q  forms a commutative group under ⋅ .  

The multiplicative identity element is labeled “1”. 
3. The operation “+” and “ ⋅ ” distribute: ( ) ( ) ( )a b c a b a c⋅ + = ⋅ + ⋅ . 

• A finite field of order q is unique up to isomorphism. 
• Two finite fields of the same size are always identical up to the labeling of their 

elements. 
• The order of Galois field completely specifies the field. 

• The integers {0, 1, 2, …, p-1}, where p is a prime, form the field GF(p) under modulo 
p addition and multiplication. 

• The order q of a Galois field GF(q) must be a power of a prime. 
• Finite fields of order pm where p is a prime can be constructed as vector spaces over 

the prime order field GF(p). 

• It is possible to represent ( )GF mq  as an m-dimensional subspace over ( )GF q , where 

( )GF q  is a subfield of ( )GF mq  of prime power order. 

• Because ( )GF mp  contains the prime-order field ( )GF p  and can be viewed as 

construction over ( )GF p , we call ( )GF mp  an extension of the field of order p. 

• Fields of order 2m can be referred to as a binary extension field. 
• ( )GF qβ∀ ∈ , at some point the sequence 2 31, , , ,β β β …  begins to repeat values 

found earlier in the sequence. The first element to repeat must be 1. 
Proof. (1) GF(q) has only a finite number of elements; hence, the sequence must 

repeat. (2) Assume x yβ β=  ≠ 1 0x y> >  is the first sequence to repeat. 

Then, because y x y x yβ β β β− = = , multiply both sides by ( ) 1yβ
−

 to get 

1x yβ − = . So, 1 is repeated before ( )0 x y x< − <  the sequence reaches 
xβ .  Contradiction. 

Order and characteristic 

• The order of a Galois Field Element:  
Let ( )GF qβ ∈ . ( )ord β  =  the order of β  = { }min : 1m

m
m β

∈
=  

• ( )GF qβ∀ ∈ , nonzero 



• ( ){ } { }ord2 3

1
, , , , :1iS i tββ β β β β

=
= = ≤ ≤…  

• Forms a subgroup of the ( ) { }GF \ 0q  under multiplication 

• Contains all of the solutions to the expression ( )ord 1x β = . 

• ( ) ( )ord 1qβ −  

• ( )1 ords sβ β= ⇔  

• 1 1qβ − = , i.e., qβ β= . 

• Let ( ), GF qα β ∈  such that iβ α= . Then, ( ) ( )
( )( )

ord
ord

gcd ,ordi
α

β
α

= . 

• The order of a Galois Field Element:  

Let ( )GF qβ ∈ . ( )ord β  =  the order of β  = { }min : 1m

m
m β

∈
=  

• Order is defined using the multiplicative operation and not additive operation. 
• ( )GF qβ∀ ∈ , nonzero 

• ( ){ } { }ord2 3

1
, , , , :1iS i tββ β β β β

=
= = ≤ ≤…  

• Consists of ( )ord β  distinct elements. 

• Forms a subgroup of the ( ) { }GF \ 0q  under multiplication. 

Proof. Let ( )ordt β= . Then modm m tβ β= . Let ,x y Sβ β ∈ . Then 

( ) 1y t yβ β
− −= . 

( ) ( ) ( )1 mod modt x y t x y tx y x t y t x yβ β β β β β β
− + − −− + −= = = = . Because 

( )0 modx y t t≤ − < , we have ( ) 1x y Sβ β
−
∈ . 

• Contains all of the solutions to the expression ( )ord 1x β = . 

• ( ) ( )ord 1qβ − . 

Proof. Because ( ){ }ord2 3

1
, , , , ββ β β β

=
…  is a subgroup of ( ) { }GF \ 0q , by 

Lagrange’s theorem, ( ){ }ord2 3

1
, , , , ββ β β β

=
…  divides ( ) { }GF \ 0q . 

Hence, ( )1t q − . 

• This determines the possible orders a finite field element can display. 
• ( )1 ords sβ β= ⇔ . 



Proof. “⇐” ( )ord sβ  ⇒ ( )ords k β= , { }0k ∈ ∪  ⇒ 

( )( )ord 1 1
k

s kββ β= = = .  

“⇒” (1) If s = 0, then ( )ord 0β  trivially. (2) If 0s > , then we can 

write 
{ }

( )
( ){ }0, ,ord0

ords q r
β

β
∈∈ ∪

= +
…

, i.e., ( )modordr s β= . Note that 

s rβ β= ( )ord qs ββ β=
1

r rβ β
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

. So, 1s rβ β= = . From 1rβ = , we 

know that r must then be 0; otherwise, contradict the minimality of the 
order of β . 

• 1 1qβ − = , i.e., qβ β= . 

Proof. ( ) ( )ord 1qβ − . 

• Let ( ), GF qα β ∈  such that iβ α= . Then, ( ) ( )
( )( )

ord
ord

gcd ,ordi
α

β
α

= . 

Proof. Let ( )ord tα = , and ( )ord xβ = . Note that 
( ) ( )

,
gcd , gcd ,

t i
i t i t

∈ ; hence 

( ) ( ) ( ) ( ) ( ) ( )gcd , gcd ,gcd , gcd , 1 1
t it i
i t i ti ti t i tβ α α= = = = . This implies 

( ) ( )
ord

gcd ,
t
i t

β , i.e., 
( )gcd ,
tx
i t

. Similarly, since ( ) ( )ord1
xiββ α= = , we 

have ( )ord ixα , i.e., t ix  which implies 
( )gcd ,
t x
i t

. Because we have 

( )gcd ,
tx
i t

 and 
( )gcd ,
t x
i t

. Hence, 
( )gcd ,
tx
i t

= . 

• ( ) ( )ord ordiα α=  iff ( )( )gcd ,ordi α  = 1. 

Proof. ( ) ( )
( )( )

ord
ord

gcd ,ord
i

i
α

α
α

= . 

• An element with order (q-1) in ( )GF q  is called a primitive element in ( )GF q . 

Every field ( )GF q  contains exactly ( )1qφ −  ≥ 1 primitive elements. 

• The Euler φ function: ( )tφ  = ( ){ }1 gcd , 1i t i t≤ < =  = 
prime number 

1
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∏  



• ( ) ( ) ( ) ( )1 2 1 2 11 1
1 2 1 1 2 21 1 1n na aa a a a

n n np p p p p p p p pφ −− −= − − −  

• An element with order (q-1) in ( )GF q  is called a primitive element in ( )GF q . 

• Every field ( )GF q  contains exactly ( )1qφ −  ≥ 1 primitive elements. 

• The Euler φ function (Euler totient function) evaluated at an integer t = ( )tφ   

=  the number of integers in the set { }1, , 1t −…  that are relatively prime to t (i.e., 
share no common divisors other than one.) 

= ( ){ }1 gcd , 1i t i t≤ < =  

= 
prime number 

1

11
p

p t
p t

t
p

< <

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∏ ; ( )1 1φ = . 

• > 0 for positive t. 
• If p is a prime, then  

• ( ) 1p pφ = − . 

• ( ) ( )1 1m mp p pφ −= −  

• If p1 and p2 are distinct prime, then  
• ( ) ( ) ( ) ( )( )1 2 1 2 1 21 1p p p p p pφ φ φ⋅ = = − −  

• ( ) ( )( )1 1
1 2 1 2 1 21 1m n m np p p p p pφ − −= − −  

• ( )
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• Given that the integer t divides (q-1), then the number of elements of order t in 
( )GF q  is ( )tφ . 

• The multiplicative structure of Galois Fields.  
Consider the Galois field ( )GF q  

(1) If t does not divide (q-1), then there are no elements of order t in ( )GF q . 

(2) If ( )1t q − , then there are ( )tφ  elements of order t in ( )GF q . 

Proof. (2) If ( )ordt α= , then the set { }2, , , tα α α…  contains t distinct solutions 

of 1tx = , and hence the set contains all the solutions. Therefore, all 
element of order t must contain in this set. To find which one has order t, 
we know that ( ) ( )ord ordiα α=  iff ( )( )gcd ,ordi α  = 1. Hence, we the 



number of element with order t is ( ){ }1 gcd , 1i t i t≤ < =  = ( )tφ  by 

definition. 

• ( )1t q −  iff ( )GF qβ∃ ∈  such that ( )ord tβ = . 

• In every field ( )GF q , there are exactly ( )1qφ −  primitive elements.  

• ( )GF q  can be represented using 0 and (q-1) consecutive powers of a primitive field 

element α ∈ ( )GF q . 

• All nonzero elements in ( )GF q  can be represented as (q-1) consecutive powers 

of a primitive element α.. Ex. 2 1

1

, , , qα α α −⎧ ⎫
⎨ ⎬
⎩ ⎭

…  or { }2 21, , , qα α −… .  

• For ( ) { }1 2, GF \ 0qβ β ∈ , 1 2,i i∃  such that 1
1

iβ α=  and 2
2

iβ α= ; hence, 
( )1 21 2 1 2 modulo -1

1 2
i i qi i i iβ β α α α α ++⋅ = ⋅ = = . 

• Note also that ( ) ( )
( )( ) ( )

ord 1ord
gcd ,ord gcd , 1

i q
i i q

α
α

α
−

= =
−

. 

• Multiplication in a Galois field of nonprime order can be performed by 
representing the elements as powers of the primitive field element α and adding 
their exponents modulo (q-1). 

• Let m(1) refer to the summation of m ones, i.e., 
 1's

1 1 1
m

⊕ ⊕ ⊕ . 

• Consider the sequence ( )( ) 0
1 0,1,1 1,1 1 1,

n
n

∞

=
= ⊕ ⊕ ⊕ … .  Then, 0 is the first repeated 

elements. 
• If ( ), GFa b q∈ , 0a b⋅ = , then either a or b must equal zero. Otherwise, ( ) { }GF 0q −  

cannot form a commutative group under “ ⋅ ” because it has no 0. 

• The characteristic of a Galois field ( )GF q  is the smallest positive integer m such 

that ( )
 1's

1 1 1 1 0
m

m = ⊕ ⊕ ⊕ = . 

• ( )GF mp  has characteristic p, where p is a prime number.  

• If p , then 
times

0α α α+ + + = . 

• The characteristic of a Galois field ( )GF q  is the smallest positive integer m such 

that ( )
 1's

1 1 1 1 0
m

m = ⊕ ⊕ ⊕ = . 

• Consider sequence 
( ) ( ) ( ) ( )1 1 2 1 3 1 4 1

0, 1 ,1 1,1 1 1,1 1 1 1,+ + + + + + … . 



This sequence must begin to repeat and the first element to repeat is 0. 
Proof. Since the field is finite, this sequence must begin to repeat at some 

point. If ( )1j  is the first repeated element, being equal to ( )1k  for 

0 k j≤ < , it follows that k must be zero; otherwise ( )( ) 1 0j k− =  is an 

earlier repetition than ( )1j . 

• ( ) ( ) ( )( )1 2 1 21 1 1m m m m⋅ =  

• Always a prime integer. 
Proof. Suppose not. Consider the sequence 0, 1, 2(1), 3(1), …, k(1), 

(k+1)(1),… Suppose that the first repeated element is k(1) = 0 where k 
is not a prime. Then ∃  , 1m n >  such that mn k= . It follows that 
( ) ( ) ( )1 1 1m n k⋅ = . So we have ( ) ( )1 1 0m n⋅ = , which implies 

( )1 0m =  or ( )1 0n = . Since 0 ,m n k< < , this contradicts the 
minimality of the characteristic of the field. 

• Notational caution:  we may write ( )k α  or kα  where  k ∈  to denote 

timesk

α α α+ + + . Note that k is irrelevant to the field ( )GF q  which contains α.. Think 

of k as ( )1k . Don’t confuse this with αβ  or α β⋅  where both ( ), GF qα β ∈ . 

• For a field ( )GF q  with characteristic p, let ( )GF qα ∈ . Then  

Proof. 
timestimes

1 1 1 0 0
pp

α α α α α
⎛ ⎞

+ + + = + + + ⋅ = ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠

. 

• If p , then 
times

0α α α+ + + = . 

• Let GF(q) be a (any) field of characteristic p, then it contains a prime-order subfield 
GF(p) = ( ) ( ) ( )( ){ }0,1,2 1 ,3 1 , , 1 1pZ p= −… . 

Proof. The set ( ) ( ) ( )( ){ }0,1,2 1 ,3 1 , , 1 1pZ p= −…  contains p distinct elements 
because p is the characteristic of GF(q) and 0 have to be the first element 
to repeat. The identities 0,1 pZ∈ . pZ  is closed under both GF(q) addition 
and multiplication because the sum or product of sums of ones is still a 
sum of ones and ( ) ( )( )1 mod 1m m p= . The additive inverse of ( )1 pj Z∈  

is clearly ( )( )1 pp j Z− ∈ . The multiplicative inverse of ( )1j  (j ≠ 0 or a 

multiple of p) is simply ( )1k , where 1modj k p⋅ ≡ . k exists because we 

know that 1 pZ∈  and the set { }p pj x x Z Z⋅ ∈ =  by multiplicative closure 

and that for  0a ≠ , 1 2 1 2b b a b a b≠ ⇒ ⋅ ≠ ⋅ . The rest of the field 
requirements (Associativity, Distributivity, etc.) are satisfied by noting 
that Zp is embedded in the field GF(q). ( )GFpZ q⊂  and it is a field. 



• Zp is a subfield of all fields GF(q) of characteristic p. 
• Because the field of order p is unique up to isomorphisms,  

Zp must be the field of integers under modulo p addition and multiplication.  

• ( )GF mp  is an m-dimensional vector space over a field ( )GF p . 

• Let GF(q) be a (any) field of characteristic p, then it contains a prime-order subfield 
GF(p) = ( ) ( ) ( )( ){ }0,1,2 1 ,3 1 , , 1 1pZ p= −… . 

• ( )GF mp , where p is a prime number. 

• is an m-dimensional vector space over a field ( )GF p . 

• contains all Galois fields of order bp  where b m . 

• has characteristic p 

• The order q of ( )GF q  must be a power of a prime. 

Proof. Let 1β  be a nonzero element in GF(q). There are p distinct elements of the 
form ( )1 1 GF qα β ∈ , where 1α  ranges over all p of the elements in 

( )GF p .  

(Recall, that ac bc= , 0c ≠  ⇒ ( ) 0a b c− =  ⇒ 0a b− =  ⇒ a b= ) 

If the field ( )GF q  contains no other elements, then the proof is complete.  

If there is an element 2β  that is not of the form 1 1α β , ( )1 GF pα ∈ , then 

there are p2 distinct elements in ( )GF q  of the form ( )1 1 2 2 GF qα β α β+ ∈ , 

where ( )1 2, GF pα α ∈ .  

This process continues until all elements in ( )GF q  can be represented in 

the form ( )1 1 2 2 GFm m qα β α β α β+ + + ∈ . 

• Each combination of coefficients ( ) ( )( )1 2, , , GF
m

m pα α α ∈…  corresponds by 

construction to a distinct element in ( )GF q . 

Proof. Assume 1 1 2 2 1 1 2 2m m m mα β α β α β α β α β α β′ ′ ′+ + + = + + + , then 
we have 1 1 2 2 0m mγ β γ β γ β+ + + =  where i i iγ α α′= − , not all 
zero. Let { }max : 0ii

k i γ= ≠ . Then we have  

( ) ( ) ( )1 1 1
1 1 2 2 1 1k k k k k kβ γ γ β γ γ β γ γ β− − −

− −= − + − + + − . 

Also, i∀  ( )1 GFk i pγ γ−− ∈ . This contradict the definition of kβ  (by 
construction) because kβ  should not be of the form 

1 1 2 2 1 1k k kβ α β α β α β− −= + + +  where ( )GFi pα ∈ . 



• ( )GF mp  contains all Galois fields of order bp  where b m . 

 ( )6GF 2

( )3GF 2 ( )2GF 2

( )1GF 2
 

• Need to be able to express ( )m bp p= . 

• ( ) ( )GF 4 GF 32⊄  

• An element β  in ( )GF mq  lies in the subfield ( )GF q  if and only if qβ β= . 

Proof. “⇒” Let ( ) ( )GF GF mq qβ ∈ ⊂ . Then, ( ) ( )ord 1qβ −  by the 

multiplicative structure of GF. So, 1 1qβ − = , which implies qβ β= . “⇐” 
Let qβ β= . Thenβ  is a root of 0qx x− = . The q elements of ( )GF q  

comprise all q roots of 0qx x− =  and the result follow. 

• For nonzero elements β  in ( )GF mq , the following are equivalent: 

(1) ( )GF qβ ∈  

(2) 1 1qβ − =  

(3) ( ) ( )ord 1qβ −  

Proof. “(1) ⇒ (3) ⇒ (2)”  by the multiplicative structure of Galois fields. “(2) ⇒ 
(3)” because in any ( )GF q′  we have 1 1qβ − =  ⇒ ( ) ( )ord 1qβ − . Finally, 

(2) ⇒ (1) by theorem above. 
• β  lies in the subfield ( )GF q  if and only if qβ β= . For nonzero β , this is 

equivalent to ( ) ( )ord 1qβ − . 

• Let α  be a primitive element in ( )GF mq . Then, all nonzero elements in ( )GF mq  can 

be represented as jα  for some integer j. An element jα  is in the subfield ( )GF q  if 

and only if j q j⋅ ≡  modulo ( )1mq − . 

Proof. ( )GFj qα ∈  iff ( )qj jα α= . In ( )GF mq , we have ( ) ( )mod 1mq jq qjα α −
= . So, 

we want ( )mod 1mjq q j− = . 

• Remark: 
• ( )0 GF q∈ . 



• ( )01 GF qα= ∈  because 0 0q⋅ ≡  modulo ( )1mq − . 

• This is equivalent to ( )1 0j q − ≡  mod ( )1mq −  

• It is also equivalent to 1
1

mqj k
q

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 for k I∈ , 0 1k q≤ < − . 

Proof. ( )1 0j q − ≡  mod ( )1mq −  means that ( ) ( )1 1mj q q k− = − . Now, 

0 1mj q≤ < − . ( )0

1
1m

j

j q
α α

= −
= = . This implies 

( ) ( )( )1 10 1
1 1

m

m m

q qq
k

q q
− −−

≤ <
− −

. So, 0 1k q≤ < − . 

• Subfield: ( )GF mp , where p is a prime number contains all Galois fields of order bp  

where b m . 

• An element β  in ( )GF mq  lies in the subfield ( )GF q  if and only if qβ β= . For 

nonzero β , this is equivalent to ( ) ( )ord 1qβ − . 

• Let α  be a primitive element in ( )GF mq . Then, all nonzero elements in ( )GF mq  can 

be represented as jα  for some integer j. An element jα  is in the subfield ( )GF q  if 

and only if j q j⋅ ≡  modulo ( )1mq −  which is equivalent to 1
1

mqj k
q

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 for k I∈ , 

0 1k q≤ < − . 

• ( )0,1 GF q∈  

• Let 1
1

mq
q
−

=
−

. Then ( ) ( ){ }20 2 3GF 0, , , , , , qq α α α α α −= … . 

• It is possible to represent ( )GF mq  as an m-dimensional subspace over ( )GF q , where 

( )GF q  is a subfield of ( )GF mq  of prime power order. 

• Let ,α β  be elements in the field ( )GF mp . Then ( )
r r rp p pα β α β+ = +  for r = 1, 2, 

3, … 
Proof. We will prove the statement by induction on r. 

( ) 1 2 2

1 2
p p p p pp p

α β α α β α β β− −⎛ ⎞ ⎛ ⎞
+ = + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. Because 

p
p

k
⎛ ⎞
⎜ ⎟
⎝ ⎠

 for 

{ }1,2,3, , 1k p∈ −… , we know that ( )
times

1 1 1 1 0
p
k

p p
k k

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞

= = + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

 for 



{ }1,2,3, , 1k p∈ −… . Hence, ( ) p p pα β α β+ = + . So, the statement is true 

for r = 1. Now, let the statement true for r = . Then, 

( ) p p pα β α β+ = + . We then have 

( ) ( )( ) ( ) ( ) ( )1

1 1

p p p pp p p p p p

p p

α β α β α β α β

α β

+

+ +

+ = + = + = +

= +
 

• Let 1 2, , , tα α α…  be elements in the field ( )GF mp , then 

( )1 2 1 2

r r r rp p p p
t tα α α α α α+ + + = + + +  for r = 1, 2, 3, … 

Proof. We will prove by induction on t. Note that the statement is true for t = 2. 
Now let it be true for t = . Them we have  

( ) ( )( )
( )

1 2 1 1 2 1

1 2 1

1 2 1

rr

r r

r r r r

pp

p p

p p p p

α α α α α α α

α α α α

α α α α

+ +

+

+

+ + + = + + + +

= + + + +

= + + + +

 

 


