Facts

- $\operatorname{gcd}(i, t)=$ the greatest common divisor of i and $t=$ the largest positive integer m such that $m \mid i$ and $m \mid t$.
- $\quad b\left|a x \Rightarrow \frac{b}{\operatorname{gcd}(a, b)}\right| x$

Proof. $b \left\lvert\, a x \Rightarrow \frac{a x}{b} \in \mathbb{N}\right.$. Let $a=k_{1} \operatorname{gcd}(a, b)$, and $b=k_{2} \operatorname{gcd}(a, b)$, with

$$
\begin{aligned}
& \operatorname{gcd}\left(k_{1}, k_{2}\right)=1 \text {. Then, } \frac{a x}{b}=\frac{k_{1} \operatorname{gcd}(a, b) x}{k_{2} \operatorname{gcd}(a, b)}=\frac{k_{1} x}{k_{2}} \in \mathbb{N} \text {. But } \\
& \operatorname{gcd}\left(k_{1}, k_{2}\right)=1 \text {; hence, } k_{2} \mid x .
\end{aligned}
$$

- $(q-1)\left(q^{m}-1\right)$.
- Let p be a prime. Then $\operatorname{gcd}\left(p^{k_{1}}, p^{k_{2}}-1\right)=1$. Also, if $a \mid p^{k_{2}}-1, \operatorname{gcd}\left(p^{k_{1}}, p^{k_{2}}-1\right)=1$.

Proof. Having $p^{k_{1}}$ implies gcd $=p^{k_{0}}, k_{0} \leq k_{1}, k_{2}$. To have $\frac{p^{k_{2}}-1}{p^{k_{0}}}=p^{k_{2}-k_{0}}-\frac{1}{p^{k_{0}}}$ $\in \mathbb{N}, k_{0}$ has to be 0 .
(Remark: To see that $k_{0} \leq k_{2}$, note that $p^{k_{2}} \geq p^{k_{2}}-1 \geq p^{k_{0}}$.)

- $a|b, a| c d, \operatorname{gcd}(b, c)=1 \Rightarrow a \mid d$.

Proof. Let $x \neq 1$ be any factor of a. Then $x \mid a$. This implies $x \mid b$. Now, if $x \mid c$, then x is a common divisor of b and c, which contradicts $\operatorname{gcd}(b, c)=1$. So, not factor of a is in c. To have $a \mid c d$, we must have all factors of a in d.
Proof. $\operatorname{gcd}(a, b)=1 \Rightarrow \exists s, t \in D s a+t b=1 . a \mid(b c) \Rightarrow b c=a q$ for some $q \in D . s a+t b=1 \Rightarrow s a c+t b c=c \Rightarrow s a c+t a q=c \Rightarrow a(s c+t q)=c$.

- $p\binom{p}{k}$ for all $k \in\{1,2,3, \ldots, p-1\}$ and for all prime integers p.

Proof. $\binom{p}{k}=\frac{p(p-1)(p-2) \cdots(p-k+1)}{k(k-1)(k-2) \cdots(2)(1)}$ is always an integer. Since p is prime, none of the integers $k,(k-1), \ldots, 3,2$ are divisors of $p .\binom{p}{k}$ is thus a multiple of p.

Finite fields / Galois Fields

- Finite fields were discovered by Evariste Galois and are thus known as Galois fields.
- The Galois field of order q is usually denoted $G F(q)$.
- GF(q) is a field. Hence

1. $\mathrm{GF}(q)$ forms a commutative group under + .

The additive identity element is labeled " 0 ".
2. $\mathrm{GF}(q) \backslash\{0\}$ forms a commutative group under \cdot.

The multiplicative identity element is labeled " 1 ".
3. The operation "+" and "." distribute: $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.

- A finite field of order q is unique up to isomorphism.
- Two finite fields of the same size are always identical up to the labeling of their elements.
- The order of Galois field completely specifies the field.
- The integers $\{0,1,2, \ldots, p-1\}$, where p is a prime, form the field $\operatorname{GF}(p)$ under modulo p addition and multiplication.
- The order \boldsymbol{q} of a Galois field GF (q) must be a power of a prime.
- Finite fields of order p^{m} where p is a prime can be constructed as vector spaces over the prime order field GF(p).
- It is possible to represent $\operatorname{GF}\left(q^{m}\right)$ as an m-dimensional subspace over $\operatorname{GF}(q)$, where $\mathrm{GF}(q)$ is a subfield of GF $\left(q^{m}\right)$ of prime power order.
- Because GF $\left(p^{m}\right)$ contains the prime-order field $\operatorname{GF}(p)$ and can be viewed as construction over GF (p), we call GF $\left(p^{m}\right)$ an extension of the field of order p.
- Fields of order 2^{m} can be referred to as a binary extension field.
- $\forall \beta \in \mathrm{GF}(q)$, at some point the sequence $1, \beta, \beta^{2}, \beta^{3}, \ldots$ begins to repeat values found earlier in the sequence. The first element to repeat must be 1.

Proof. (1) $\mathrm{GF}(q)$ has only a finite number of elements; hence, the sequence must repeat. (2) Assume $\beta^{x}=\beta^{y} \neq 1 x>y>0$ is the first sequence to repeat. Then, because $\beta^{y} \beta^{x-y}=\beta^{x}=\beta^{y}$, multiply both sides by $\left(\beta^{y}\right)^{-1}$ to get $\beta^{x-y}=1$. So, 1 is repeated before $(0<x-y<x)$ the sequence reaches β^{x}. Contradiction.

Order and characteristic

- The order of a Galois Field Element:

Let $\beta \in \operatorname{GF}(q) . \operatorname{ord}(\beta)=$ the order of $\beta=\min _{m \in \mathbb{N}}\left\{m: \beta^{m}=1\right\}$

- $\forall \beta \in \mathrm{GF}(q)$, nonzero
- $S=\left\{\beta, \beta^{2}, \beta^{3}, \ldots, \beta_{=1}^{\operatorname{ord}(\beta)}\right\}=\left\{\beta^{i}: 1 \leq i \leq t\right\}$
- Forms a subgroup of the $\operatorname{GF}(q) \backslash\{0\}$ under multiplication
- Contains all of the solutions to the expression $x^{\operatorname{ord}(\beta)}=1$.
- $\quad \operatorname{ord}(\beta) \mid(q-1)$
- $\beta^{s}=1 \Leftrightarrow \operatorname{ord}(\beta) \mid s$
- $\quad \beta^{q-1}=1$, i.e., $\beta^{q}=\beta$.
- Let $\alpha, \beta \in \mathrm{GF}(q)$ such that $\beta=\alpha^{i}$. Then, $\operatorname{ord}(\beta)=\frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}(i, \operatorname{ord}(\alpha))}$.
- The order of a Galois Field Element:

Let $\beta \in \mathrm{GF}(q) . \operatorname{ord}(\beta)=$ the order of $\beta=\min _{m \in \mathbb{N}}\left\{m: \beta^{m}=1\right\}$

- Order is defined using the multiplicative operation and not additive operation.
- $\forall \beta \in \mathrm{GF}(q)$, nonzero
- $S=\left\{\beta, \beta^{2}, \beta^{3}, \ldots, \beta_{=1}^{\operatorname{ord}(\beta)}\right\}=\left\{\beta^{i}: 1 \leq i \leq t\right\}$
- Consists of $\operatorname{ord}(\beta)$ distinct elements.
- Forms a subgroup of the $\operatorname{GF}(q) \backslash\{0\}$ under multiplication.

Proof. Let $t=\operatorname{ord}(\beta)$. Then $\beta^{m}=\beta^{m \text { modt }}$. Let $\beta^{x}, \beta^{y} \in S$. Then

$$
\begin{aligned}
& \left(\beta^{y}\right)^{-1}=\beta^{t-y} . \\
& \beta^{x}\left(\beta^{y}\right)^{-1}=\beta^{x} \beta^{t-y}=\beta^{t+x-y}=\beta^{(t+x-y) \bmod t}=\beta^{(x-y) \bmod t} . \text { Because } \\
& 0 \leq(x-y) \bmod t<t, \text { we have } \beta^{x}\left(\beta^{y}\right)^{-1} \in S
\end{aligned}
$$

- Contains all of the solutions to the expression $x^{\operatorname{ord}(\beta)}=1$.
- $\quad \operatorname{ord}(\beta) \mid(q-1)$.

Proof. Because $\left\{\beta, \beta^{2}, \beta^{3}, \ldots, \beta_{=1}^{\operatorname{ord}(\beta)}\right\}$ is a subgroup of $\operatorname{GF}(q) \backslash\{0\}$, by Lagrange's theorem, $\left|\left\{\beta, \beta^{2}, \beta^{3}, \ldots, \beta_{=1}^{\operatorname{ord}(\beta)}\right\}\right|$ divides $|\operatorname{GF}(q) \backslash\{0\}|$. Hence, $t \mid(q-1)$.

- This determines the possible orders a finite field element can display.
- $\beta^{s}=1 \Leftrightarrow \operatorname{ord}(\beta) \mid s$.

$$
\text { Proof. " } \Leftarrow \text { " } \operatorname{ord}(\beta) \mid s \Rightarrow s=k \operatorname{ord}(\beta), k \in \mathbb{N} \cup\{0\} \Rightarrow
$$

$$
\beta^{s}=\left(\beta^{\operatorname{ord}(\beta)}\right)^{k}=1^{k}=1
$$

$$
\text { " } \Rightarrow " \text { (1) If } s=0 \text {, then } \operatorname{ord}(\beta) \mid 0 \text { trivially. (2) If } s>0 \text {, then we can }
$$ write $s=\underset{\in \mathbb{N} \cup\{0\}}{q} \operatorname{ord}(\beta)+\underset{\epsilon\{0, \ldots, \operatorname{ord}(\beta)\}}{r}$, i.e., $r=\operatorname{smod} \operatorname{ord}(\beta)$. Note that $\beta^{s}=\beta^{r}\left(\beta^{s}=\left(\beta^{1} \text { ord } \beta\right)^{q} \beta^{r}=\beta^{r}\right)$. So, $\beta^{s}=\beta^{r}=1$. From $\beta^{r}=1$, we know that r must then be 0 ; otherwise, contradict the minimality of the order of β.

- $\quad \beta^{q-1}=1$, i.e., $\beta^{q}=\beta$.

Proof. ord $(\beta) \mid(q-1)$.

- Let $\alpha, \beta \in \mathrm{GF}(q)$ such that $\beta=\alpha^{i}$. Then, $\operatorname{ord}(\beta)=\frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}(i, \operatorname{ord}(\alpha))}$. Proof. Let $\operatorname{ord}(\alpha)=t$, and $\operatorname{ord}(\beta)=x$. Note that $\frac{t}{\operatorname{gcd}(i, t)}, \frac{i}{\operatorname{gcd}(i, t)} \in \mathbb{N}$; hence $\beta^{\frac{t}{\operatorname{gcd}(i, t)}}=\left(\alpha^{i}\right)^{\frac{t}{\operatorname{gcd}(i, t)}}=\left(\alpha^{t}\right)^{\frac{i}{\operatorname{gcd}(i, t)}}=1^{\frac{i}{\operatorname{gcd}(i, t)}}=1$. This implies $\operatorname{ord}(\beta) \left\lvert\, \frac{t}{\operatorname{gcd}(i, t)}\right.$, i.e., $x \left\lvert\, \frac{t}{\operatorname{gcd}(i, t)}\right.$. Similarly, since $1=\beta^{\operatorname{ord}(\beta)}=\left(\alpha^{i}\right)^{x}$, we have $\operatorname{ord}(\alpha) \mid i x$, i.e., $t \mid i x$ which implies $\left.\frac{t}{\operatorname{gcd}(i, t)} \right\rvert\, x$. Because we have $x \left\lvert\, \frac{t}{\operatorname{gcd}(i, t)}\right.$ and $\left.\frac{t}{\operatorname{gcd}(i, t)} \right\rvert\, x$. Hence, $x=\frac{t}{\operatorname{gcd}(i, t)}$.
- $\quad \operatorname{ord}\left(\alpha^{i}\right)=\operatorname{ord}(\alpha)$ iff $\operatorname{gcd}(i, \operatorname{ord}(\alpha))=1$.

Proof. ord $\left(\alpha^{i}\right)=\frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}(i, \operatorname{ord}(\alpha))}$.

- An element with order $(q-1)$ in $\operatorname{GF}(q)$ is called a primitive element in $\operatorname{GF}(q)$. Every field GF (q) contains exactly $\phi(q-1) \geq 1$ primitive elements.
- The Euler ϕ function: $\phi(t)=|\{1 \leq i<t \mid \operatorname{gcd}(i, t)=1\}|=t \prod_{\substack{\text { prime numberp } \\ 1 \leq p<t \\ p \mid t}}\left(1-\frac{1}{p}\right)$

$$
\text { - } \quad \phi\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}\right)=p_{1}^{a_{1}-1}\left(p_{1}-1\right) p_{2}^{a_{2}-1}\left(p_{2}-1\right) \cdots p_{n}^{a_{n}-1}\left(p_{n}-1\right)
$$

- An element with order $(q-1)$ in $\mathrm{GF}(q)$ is called a primitive element in $\mathrm{GF}(q)$.
- Every field GF (q) contains exactly $\phi(q-1) \geq 1$ primitive elements.
- The Euler ϕ function (Euler totient function) evaluated at an integer $t=\phi(t)$
$=$ the number of integers in the set $\{1, \ldots, t-1\}$ that are relatively prime to t (i.e., share no common divisors other than one.)
$=|\{1 \leq i<t \mid \operatorname{gcd}(i, t)=1\}|$
$=t \prod_{\substack{\text { prime number } \\ 1<p<t \\ p \not t}}\left(1-\frac{1}{p}\right) ; \phi(1)=1$.
- >0 for positive t.
- If p is a prime, then
- $\quad \phi(p)=p-1$.
- $\phi\left(p^{m}\right)=p^{m-1}(p-1)$
- If p_{1} and p_{2} are distinct prime, then
- $\phi\left(p_{1} \cdot p_{2}\right)=\phi\left(p_{1}\right) \phi\left(p_{2}\right)=\left(p_{1}-1\right)\left(p_{2}-1\right)$
- $\phi\left(p_{1}^{m} p_{2}^{n}\right)=p_{1}^{m-1} p_{2}^{n-1}\left(p_{1}-1\right)\left(p_{2}-1\right)$
- $\phi\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}\right)=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{n}}\right)$

$$
=p_{1}^{a_{1}-1}\left(p_{1}-1\right) p_{2}^{a_{2}-1}\left(p_{2}-1\right) \cdots p_{n}^{a_{n}-1}\left(p_{n}-1\right)
$$

- Given that the integer t divides $(q-1)$, then the number of elements of order t in
$\mathrm{GF}(q)$ is $\phi(t)$.

- The multiplicative structure of Galois Fields.

Consider the Galois field GF (q)
(1) If t does not divide $(q-1)$, then there are no elements of order t in $\operatorname{GF}(q)$.
(2) If $t \mid(q-1)$, then there are $\phi(t)$ elements of order t in $\mathrm{GF}(q)$.

Proof. (2) If $t=\operatorname{ord}(\alpha)$, then the set $\left\{\alpha, \alpha^{2}, \ldots, \alpha^{t}\right\}$ contains t distinct solutions of $x^{t}=1$, and hence the set contains all the solutions. Therefore, all element of order t must contain in this set. To find which one has order t, we know that $\operatorname{ord}\left(\alpha^{i}\right)=\operatorname{ord}(\alpha)$ iff $\operatorname{gcd}(i, \operatorname{ord}(\alpha))=1$. Hence, we the
number of element with order t is $|\{1 \leq i<t \mid \operatorname{gcd}(i, t)=1\}|=\phi(t)$ by definition.

- $t \mid(q-1)$ iff $\exists \beta \in \mathrm{GF}(q)$ such that $\operatorname{ord}(\beta)=t$.
- In every field GF (q), there are exactly $\phi(q-1)$ primitive elements.
- $\quad \mathrm{GF}(q)$ can be represented using 0 and $(q-1)$ consecutive powers of a primitive field element $\alpha \in \mathrm{GF}(q)$.
- All nonzero elements in $\mathrm{GF}(q)$ can be represented as $(q-1)$ consecutive powers of a primitive element α.. Ex. $\{\alpha, \alpha^{2}, \ldots, \underbrace{\alpha^{q-1}}_{1}\}$ or $\left\{1, \alpha^{2}, \ldots, \alpha^{q-2}\right\}$.
- For $\beta_{1}, \beta_{2} \in \mathrm{GF}(q) \backslash\{0\}, \exists i_{1}, i_{2}$ such that $\beta_{1}=\alpha^{i_{1}}$ and $\beta_{2}=\alpha^{i_{2}}$; hence, $\beta_{1} \cdot \beta_{2}=\alpha^{i_{1}} \cdot \alpha^{i_{2}}=\alpha^{i_{1}+i_{2}}=\alpha^{i_{1}+i_{2} \operatorname{modulo}(q-1)}$.
- Note also that $\operatorname{ord}\left(\alpha^{i}\right)=\frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}(i, \operatorname{ord}(\alpha))}=\frac{q-1}{\operatorname{gcd}(i, q-1)}$.
- Multiplication in a Galois field of nonprime order can be performed by representing the elements as powers of the primitive field element α and adding their exponents modulo ($q-1$).
- Let $\boldsymbol{m} \mathbf{(1)}$ refer to the summation of m ones, i.e., $\underbrace{1 \oplus 1 \oplus \cdots \oplus 1}_{m \text { 1's }}$.
- Consider the sequence $(n(1))_{n=0}^{\infty}=0,1,1 \oplus 1,1 \oplus 1 \oplus 1, \ldots$. Then, 0 is the first repeated elements.
- If $a, b \in \operatorname{GF}(q), a \cdot b=0$, then either a or b must equal zero. Otherwise, $\operatorname{GF}(q)-\{0\}$ cannot form a commutative group under ". " because it has no 0 .
- The characteristic of a Galois field $\operatorname{GF}(q)$ is the smallest positive integer m such that $m(1)=\underbrace{1 \oplus 1 \oplus \cdots \oplus 1}_{m 1^{\prime} \text { 's }}=0$.
- $\operatorname{GF}\left(p^{m}\right)$ has characteristic p, where p is a prime number.
- If $p \mid \ell$, then $\underbrace{\alpha+\alpha+\cdots+\alpha}_{\ell \text { times }}=0$.
- The characteristic of a Galois field $\operatorname{GF}(q)$ is the smallest positive integer m such that $m(1)=\underbrace{1 \oplus 1 \oplus \cdots}_{m 1^{\prime} s}=0$.

This sequence must begin to repeat and the first element to repeat is 0 .
Proof. Since the field is finite, this sequence must begin to repeat at some point. If $j(1)$ is the first repeated element, being equal to $k(1)$ for $0 \leq k<j$, it follows that k must be zero; otherwise $(j-k)(1)=0$ is an earlier repetition than $j(1)$.

- $\quad m_{1}(1) \cdot m_{2}(1)=\left(m_{1} m_{2}\right)(1)$
- Always a prime integer.

Proof. Suppose not. Consider the sequence $0,1,2(1), 3(1), \ldots, k(1)$, $(k+1)(1), \ldots$ Suppose that the first repeated element is $k(1)=0$ where k is not a prime. Then $\exists m, n>1$ such that $m n=k$. It follows that $m(1) \cdot n(1)=k(1)$. So we have $m(1) \cdot n(1)=0$, which implies $m(1)=0$ or $n(1)=0$. Since $0<m, n<k$, this contradicts the minimality of the characteristic of the field.

- Notational caution: we may write $k(\alpha)$ or $k \alpha$ where $k \in \mathbb{N}$ to denote $\underbrace{\alpha+\alpha+\cdots+\alpha}_{k \text { times }}$. Note that k is irrelevant to the field GF (q) which contains α.. Think of k as $k(1)$. Don't confuse this with $\alpha \beta$ or $\alpha \cdot \beta$ where both $\alpha, \beta \in \mathrm{GF}(q)$.
- For a field $\operatorname{GF}(q)$ with characteristic p, let $\alpha \in \operatorname{GF}(q)$. Then

$$
\text { Proof. } \underbrace{\alpha+\alpha+\cdots+\alpha}_{p \text { times }}=(\underbrace{1+1+\cdots+1}_{p \text { times }}) \cdot \alpha=0 \cdot \alpha=0 \text {. }
$$

- If $p \mid \ell$, then $\underbrace{\alpha+\alpha+\cdots+\alpha}_{\ell \text { times }}=0$.
- Let $\mathrm{GF}(q)$ be a (any) field of characteristic p, then it contains a prime-order subfield $G F(p)=Z_{p}=\{0,1,2(1), 3(1), \ldots,(p-1)(1)\}$.

Proof. The set $Z_{p}=\{0,1,2(1), 3(1), \ldots,(p-1)(1)\}$ contains p distinct elements because p is the characteristic of $\operatorname{GF}(q)$ and 0 have to be the first element to repeat. The identities $0,1 \in Z_{p} . Z_{p}$ is closed under both $\mathrm{GF}(q)$ addition and multiplication because the sum or product of sums of ones is still a sum of ones and $m(1)=(\bmod p)(1)$. The additive inverse of $j(1) \in Z_{p}$ is clearly $(p-j)(1) \in Z_{p}$. The multiplicative inverse of $j(1)(j \neq 0$ or a multiple of p) is simply $k(1)$, where $j \cdot k \equiv 1 \bmod p . k$ exists because we know that $1 \in Z_{p}$ and the set $\left\{j \cdot x \mid x \in Z_{p}\right\}=Z_{p}$ by multiplicative closure and that for $a \neq 0, b_{1} \neq b_{2} \Rightarrow a \cdot b_{1} \neq a \cdot b_{2}$. The rest of the field requirements (Associativity, Distributivity, etc.) are satisfied by noting that Z_{p} is embedded in the field $\operatorname{GF}(q) . Z_{p} \subset \mathrm{GF}(q)$ and it is a field.

- $\quad Z_{p}$ is a subfield of all fields GF (q) of characteristic p.
- Because the field of order p is unique up to isomorphisms, Z_{p} must be the field of integers under modulo p addition and multiplication.
- GF $\left(p^{m}\right)$ is an m-dimensional vector space over a field $\operatorname{GF}(p)$.
- Let GF (q) be a (any) field of characteristic p, then it contains a prime-order subfield $\operatorname{GF}(p)=Z_{p}=\{0,1,2(1), 3(1), \ldots,(p-1)(1)\}$.
- $\operatorname{GF}\left(p^{m}\right)$, where p is a prime number.
- is an m-dimensional vector space over a field $\operatorname{GF}(p)$.
- contains all Galois fields of order p^{b} where $b \mid m$.
- has characteristic p
- The order q of $G F(q)$ must be a power of a prime.

Proof. Let β_{1} be a nonzero element in $\mathrm{GF}(q)$. There are p distinct elements of the form $\alpha_{1} \beta_{1} \in \mathrm{GF}(q)$, where α_{1} ranges over all p of the elements in $\mathrm{GF}(p)$.
(Recall, that $a c=b c, c \neq 0 \Rightarrow(a-b) c=0 \Rightarrow a-b=0 \Rightarrow a=b$) If the field $\mathrm{GF}(q)$ contains no other elements, then the proof is complete. If there is an element β_{2} that is not of the form $\alpha_{1} \beta_{1}, \alpha_{1} \in \operatorname{GF}(p)$, then there are p^{2} distinct elements in $\operatorname{GF}(q)$ of the form $\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2} \in \operatorname{GF}(q)$, where $\alpha_{1}, \alpha_{2} \in \operatorname{GF}(p)$.
This process continues until all elements in $\operatorname{GF}(q)$ can be represented in the form $\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\cdots+\alpha_{m} \beta_{m} \in \operatorname{GF}(q)$.

- Each combination of coefficients $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \in(\mathrm{GF}(p))^{m}$ corresponds by construction to a distinct element in $\operatorname{GF}(q)$.

Proof. Assume $\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\cdots+\alpha_{m} \beta_{m}=\alpha_{1}^{\prime} \beta_{1}+\alpha_{2}^{\prime} \beta_{2}+\cdots+\alpha_{m}^{\prime} \beta_{m}$, then we have $\gamma_{1} \beta_{1}+\gamma_{2} \beta_{2}+\cdots+\gamma_{m} \beta_{m}=0$ where $\gamma_{i}=\alpha_{i}-\alpha_{i}^{\prime}$, not all zero. Let $k=\max _{i}\left\{i: \gamma_{i} \neq 0\right\}$. Then we have

$$
\beta_{k}=\left(-\gamma_{k}^{-1} \gamma_{1}\right) \beta_{1}+\left(-\gamma_{k}^{-1} \gamma_{2}\right) \beta_{2}+\cdots+\left(-\gamma_{k}^{-1} \gamma_{k-1}\right) \beta_{k-1} .
$$

Also, $\forall i-\gamma_{k}^{-1} \gamma_{i} \in \mathrm{GF}(p)$. This contradict the definition of β_{k} (by construction) because β_{k} should not be of the form $\beta_{k}=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\cdots+\alpha_{k-1} \beta_{k-1}$ where $\alpha_{i} \in \operatorname{GF}(p)$.

- $\operatorname{GF}\left(p^{m}\right)$ contains all Galois fields of order p^{b} where $b \mid m$.

- \quad Need to be able to express $p^{m}=\left(p^{b}\right)^{l}$.
- $\mathrm{GF}(4) \not \subset \mathrm{GF}(32)$
- An element β in $\operatorname{GF}\left(q^{m}\right)$ lies in the subfield $\operatorname{GF}(q)$ if and only if $\beta^{q}=\beta$.

Proof. " \Rightarrow " Let $\beta \in \operatorname{GF}(q) \subset \operatorname{GF}\left(q^{m}\right)$. Then, ord $(\beta) \mid(q-1)$ by the multiplicative structure of GF. So, $\beta^{q-1}=1$, which implies $\beta^{q}=\beta$. " \Leftarrow " Let $\beta^{q}=\beta$. Then β is a root of $x^{q}-x=0$. The q elements of $\operatorname{GF}(q)$ comprise all q roots of $x^{q}-x=0$ and the result follow.

- For nonzero elements β in $\operatorname{GF}\left(q^{m}\right)$, the following are equivalent:
(1) $\beta \in \mathrm{GF}(q)$
(2) $\beta^{q-1}=1$
(3) $\operatorname{ord}(\beta) \mid(q-1)$

Proof. "(1) $\Rightarrow(3) \Rightarrow(2) "$ by the multiplicative structure of Galois fields. "(2) \Rightarrow (3)" because in any $\operatorname{GF}\left(q^{\prime}\right)$ we have $\beta^{q-1}=1 \Rightarrow \operatorname{ord}(\beta)(q-1)$. Finally, $(2) \Rightarrow(1)$ by theorem above.

- $\quad \beta$ lies in the subfield $\mathrm{GF}(q)$ if and only if $\beta^{q}=\beta$. For nonzero β, this is equivalent to ord $(\beta) \mid(q-1)$.
- Let α be a primitive element in $\operatorname{GF}\left(q^{m}\right)$. Then, all nonzero elements in $\operatorname{GF}\left(q^{m}\right)$ can be represented as α^{j} for some integer j. An element α^{j} is in the subfield $\operatorname{GF}(q)$ if and only if $j \cdot q \equiv j$ modulo $\left(q^{m}-1\right)$.

Proof. $\alpha^{j} \in \operatorname{GF}(q)$ iff $\left(\alpha^{j}\right)^{q}=\alpha^{j}$. In $\operatorname{GF}\left(q^{m}\right)$, we have $\left(\alpha^{j}\right)^{q}=\alpha^{j q \bmod \left(q^{m}-1\right)}$. So, we want $j q \bmod \left(q^{m}-1\right)=j$.

- Remark:
- $\quad 0 \in \operatorname{GF}(q)$.
- $1=\alpha^{0} \in \operatorname{GF}(q)$ because $0 \cdot q \equiv 0$ modulo $\left(q^{m}-1\right)$.
- This is equivalent to $j(q-1) \equiv 0 \bmod \left(q^{m}-1\right)$
- It is also equivalent to $j=k\left(\frac{q^{m}-1}{q-1}\right)$ for $k \in I, 0 \leq k<q-1$.

Proof. $j(q-1) \equiv 0 \bmod \left(q^{m}-1\right)$ means that $j(q-1)=\left(q^{m}-1\right) k$. Now, $0 \leq j<q^{m}-1 .\left(\left.\alpha^{j}\right|_{j=q^{m}-1}=1=\alpha^{0}\right)$. This implies $\frac{0(q-1)}{q^{m}-1} \leq k<\frac{\left(q^{m}-1\right)(q-1)}{q^{m}-1}$. So, $0 \leq k<q-1$.

- Subfield: $\operatorname{GF}\left(p^{m}\right)$, where p is a prime number contains all Galois fields of order p^{b} where $b \mid m$.
- An element β in $\operatorname{GF}\left(q^{m}\right)$ lies in the subfield $\operatorname{GF}(q)$ if and only if $\beta^{q}=\beta$. For nonzero β, this is equivalent to $\operatorname{ord}(\beta) \mid(q-1)$.
- Let α be a primitive element in $\operatorname{GF}\left(q^{m}\right)$. Then, all nonzero elements in $\operatorname{GF}\left(q^{m}\right)$ can be represented as α^{j} for some integer j. An element α^{j} is in the subfield GF (q) if and only if $j \cdot q \equiv j$ modulo $\left(q^{m}-1\right)$ which is equivalent to $j=k\left(\frac{q^{m}-1}{q-1}\right)$ for $k \in I$, $0 \leq k<q-1$.
- $0,1 \in \mathrm{GF}(q)$
- Let $\ell=\frac{q^{m}-1}{q-1}$. Then $\operatorname{GF}(q)=\left\{0, \alpha^{0}, \alpha^{\ell}, \alpha^{2 \ell}, \alpha^{3 \ell}, \ldots, \alpha^{(q-2) \ell}\right\}$.
- It is possible to represent $\operatorname{GF}\left(q^{m}\right)$ as an m-dimensional subspace over $\operatorname{GF}(q)$, where $\mathrm{GF}(q)$ is a subfield of GF $\left(q^{m}\right)$ of prime power order.
- Let α, β be elements in the field $\operatorname{GF}\left(p^{m}\right)$. Then $(\alpha+\beta)^{p^{r}}=\alpha^{p^{r}}+\beta^{p^{r}}$ for $r=1,2$, 3, ...

Proof. We will prove the statement by induction on r.

$$
\begin{aligned}
& (\alpha+\beta)^{p}=\alpha^{p}+\binom{p}{1} \alpha^{p-1} \beta+\binom{p}{2} \alpha^{p-2} \beta^{2}+\cdots+\beta^{p} \text {. Because } p\binom{p}{k} \text { for } \\
& k \in\{1,2,3, \ldots, p-1\} \text {, we know that }\binom{p}{k}=\binom{p}{k}(1)=(\underbrace{}_{\binom{p}{k} \mathrm{times}^{1+1+\cdots+1}})=0 \text { for }
\end{aligned}
$$

$k \in\{1,2,3, \ldots, p-1\}$. Hence, $(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}$. So, the statement is true for $r=1$. Now, let the statement true for $r=\ell$. Then, $(\alpha+\beta)^{p^{\ell}}=\alpha^{p^{\ell}}+\beta^{p^{\ell}}$. We then have

$$
\begin{aligned}
(\alpha+\beta)^{p^{\ell+1}} & =\left((\alpha+\beta)^{p^{\ell}}\right)^{p}=\left(\alpha^{p^{\ell}}+\beta^{p^{\ell}}\right)^{p}=\left(\alpha^{p^{\ell}}\right)^{p}+\left(\beta^{p^{\ell}}\right)^{p} \\
& =\alpha^{p^{\ell+1}}+\beta^{p^{\ell+1}}
\end{aligned}
$$

- Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ be elements in the field $\operatorname{GF}\left(p^{m}\right)$, then $\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{t}\right)^{p^{r}}=\alpha_{1}^{p^{r}}+\alpha_{2}^{p^{r}}+\cdots+\alpha_{t}^{p^{r}}$ for $r=1,2,3, \cdots$

Proof. We will prove by induction on t. Note that the statement is true for $t=2$.
Now let it be true for $t=\ell$. Them we have

$$
\begin{aligned}
\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{\ell+1}\right)^{p^{r}} & =\left(\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{\ell}\right)+\alpha_{\ell+1}\right)^{p^{r}} \\
& =\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{\ell}\right)^{p^{r}}+\alpha_{\ell+1}^{p^{r}} \\
& =\alpha_{1}^{p^{r}}+\alpha_{2}^{p^{r}}+\cdots+\alpha_{\ell}^{p^{r}}+\alpha_{\ell+1}^{p^{r}}
\end{aligned}
$$

